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a b s t r a c t 

Subspace identification has been used extensively because its ability to detail the internal subspace struc- 

ture of data, which can be used in a variety of applications such as dimension reduction, anomaly detec- 

tion and so on. However, many advanced algorithms are limited on their applicability in large data sets 

due to large computation and memory requirements with respect to the number of input data points. To 

overcome this problem, we propose a simple method that screens out a large number of data points by 

using k nearest neighbours and subspace recovery is performed on reduced set. The proposed method is 

surprisingly simple with significant reduction to both memory and computations requirements, and yet 

possesses desirable probability lower bound for its success in the context of big data. Besides theoretical 

analysis, our experiments also show that our method exceeds theoretical expectations and outperforms 

existing similar algorithms. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Identifying a union of subspaces, also called subspace cluster- 

ng, is proven useful in a large number of applications. Examples 

nclude temporal video segmentation [1,2] , segmentation of hyper- 

pectral mineral data [1,3] , feature extraction [4,5] and many more. 

We first of all formalise subspace clustering problem in matrix 

lgebra as follows: given a data matrix of N observed column-wise 

amples X = [ x 1 , x 2 , . . . , x N ] ∈ R 

D ×N , where D is the dimension of

he data in the ambient space. Data within X is assumed to be 

rawn from a union of L subspaces {S j } L j=1 
of dimensions { d j } L j=1 

.

he objective of subspace clustering is to learn the corresponding 

ubspace labels l = [ l 1 , l 2 , . . . , l N ] ∈ N 

N for all the data points where

ach l i ∈ { 1 , . . . , L } . Both the number of subspaces L and the dimen-

ion of each subspace d j are unknown. To further complicate the 

roblem it is rarely the case that X is clean. The data is often sub-

ect to noise or corruption either at the time of capture (e.g. a dig- 

tal imaging device) or during transmission (e.g. wireless commu- 

ication). It is quite clear that subspace clustering is a difficult task 

ince one must produce accurate results quickly while contending 

ith numerous unknown parameters and large volume of poten- 

ially noisy data. 

The usefulness of subspace clustering has spurred the devel- 

pment of subspace clustering algorithms, from early algebraic 

ethods such as Generalised Principal Component Analysis (GPCA) 
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2,6] to most recent multi-view subspace clustering [7,8] , improv- 

ng accuracy and robustness [9,10] in various ways. 

Spectral methods have come to dominate subspace clustering 

iterature as they offer some advantages over other types of meth- 

ds. They mainly consist of two stages: learning a similarity ma- 

rix for the data then assigning cluster labels through segmen- 

ation of the similarity matrix. A forerunner of spectral methods 

alled “Sparse Subspace Clustering” (SSC) was introduced in [11] . 

SC exploits the self-expressive property of data [12] to find the 

ubspaces: 

 i = Xz i , z ii = 0 , ∀ i = 1 ∼ N (1) 

here z i is a vector of reconstruction coefficients for x i and z ii 
s the i th element in z i . To reconstruct x i ∈ S j , one only needs d i 
ther points from the same subspace after removal of noise. This 

eans that each data point can be sparsely represented by other 

oints coming from the same subspace as the given one. Sparse 

ubspace Clustering as its name suggests exploits this fact. Com- 

ining the additive noise model, the objective function for SSC is 

in 

Z 
λ‖ Z ‖ 1 + 

1 

2 

‖ X − XZ ‖ 

2 
F s.t. diag (Z ) = 0 , (2) 

here Z = [ z 1 , . . . , z N ] is the coefficients matrix and ‖ Z ‖ 1 =
 

i 

∑ 

j | Z i j | is the � 1 norm. Alternatively one can instead pronounce 

he error in the objective as 

in 

Z 
λ‖ Z ‖ 1 + 

1 

2 

‖ E ‖ 

2 
F s.t. X = XZ + E , diag (Z ) = 0 (3) 

here E is the error matrix and λ ≥ 0 is used to control the trade- 

ff between the sparsity of Z and the error. 

https://doi.org/10.1016/j.sigpro.2021.108082
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2021.108082&domain=pdf
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To obtain the final subspace labels, the reconstruction coeffi- 

ients in Z are given a secondary interpretation as the affinity or 

imilarity between the data points. Spectral clustering is applied 

o Z . Typically N-CUT [13] is used as it produces the most accurate

egmentation even for poorly constructed affinity matrices and is 

elatively fast. 

While SSC has promising theoretical guarantees [12] and has 

hown good performance for small evaluation datasets, it is not 

idely applied in large size data sets. This is due to (1) O 

(
N 

2 
)

emory requirements and (2) O 

(
N 

2 
)

FLOP (floating point opera- 

ions) requirements. The first is easily understood as Z ∈ R 

N×N . One 

ould contend that Z could be stored in a sparse format, however 

ince the support of Z is unknown and varies between iterations of 

he SSC algorithm this approach would introduce significant over- 

ead. Similarly the high FLOP count is due to the dimensions of Z , 

ince each element must be calculated per iteration. 

Although SSC has some desirable properties such as correct 

ubspace identification guarantee [14] , and flexibility in modelling 

hich inspired many methods like [1,3,15] , huge memory and 

omputational costs prevent it and its later variants from being ap- 

lied to even modestly sized datasets. In light of this important is- 

ue, there has been considerable interests in developing tractable 

ubspace clustering algorithms. We elaborate the latest develop- 

ents in the next section and propose our solution. 

. Related work on efficient solutions 

To alleviate the computational complexity of an algorithm, one 

roliferate direction is to approximate existing methods at the cost 

f minimum accuracy loss. In subspace clustering domain, approx- 

mation methods can be divided into two classes: inductive and 

euristic. Inductive methods perform some subspace clustering al- 

orithm or learn the similarity matrix on a small subset of the 

ata. The full structure of the similarity matrix or labels is then 

btained by inductive transfer from the subset. Heuristic methods 

irectly assign cluster labels by greedy selection of nearest neigh- 

ours based on a defined metric. 

Scalable SSC (SSSC) [16] was probably the first attempt to re- 

olve computational issues. As an inductive method, it first se- 

ects some candidate samples from the data and performs SSC on 

hese samples. Then the remaining samples are assigned to clus- 

ers based on their fit into the clusters formed by the training can- 

idates. This approach has considerable issues. First, the candidate 

amples are selected by uniform random sampling. This does not 

uarantee that every cluster will be accounted for in the candidate 

et. Second, there must be enough candidate samples for the can- 

idate clusters to generalise to the remaining samples. Correctly 

hoosing the number of samples is a difficult task. 

Arguably the most prominent heuristic method is Orthogonal 

atching Pursuit (OMP), which has been long used as a greedy 

parse approximation method [17] . For each data point, a resid- 

al vector is set as the data point. Then the nearest neighbour to 

he residual is found and then the residual is updated by a pro- 

ection of the data point onto the span formed by the currently 

icked up neighbours. This is repeated until the number of neigh- 

ours is reached or the norm of the residual is small enough. OMP 

s also known by other names such as Greedy Feature Selection 

GFS) [18] and is a constant well that researches draw from [19] . 

Although OMP is advertised as a fast approximate method how- 

ver in practice we do not find this to be the case. First, the near-

st neighbour search is performed for every iteration. Second, the 

omputational and memory requirements of a naive implementa- 

ion tend to increase dramatically as D increases due to the need 

o create a D × D matrix in each iteration for every data point. 

his, in some cases, makes it just as intractable as SSC. Third, the 
2 
aive implementation requires successive computation of the SVD 

f the span matrix at each iteration. The second and third points 

ave fortunately been mitigated by improvements such as Rank-1 

pdating scheme of Moore-Penrose Inverse [20] , factorisation ap- 

roaches such as QR and Cholesky decomposition [21] or more es- 

teric methods [17,22,23] . However the speed gain from OMP algo- 

ithm is shadowed by its performance. As shown in Section 5 we 

nd that GFS (OMP) performs poorly in terms of clustering accu- 

acy. 

OMP has inspired other methods such as Greedy Subspace Clus- 

ering (GSC) [24] and ORGEN [25] . GSC differs from OMP in neigh- 

our selection. Each neighbour is selected by finding the data point 

hich has the largest norm of projection onto the span formed by 

he current neighbours. Although at first glance GSC appears to be 

imple and thus likely to scale well w.r.t. N, the projection step 

s quite computationally intensive and just like OMP the nearest 

eighbour search is performed in each iteration. 

ORGEN extends the SSC model to the Elastic-Net model. That 

s, it uses the � 2 norm in tandem with the � 1 norm. From an ini-

ialisation point of some neighbours of each x i it solves the Elastic- 

et objective then determines an “oracle point”, which is the resid- 

al from fitting the coefficients from the Elastic-Net procedure to 

he model. This oracle point is then used to find potential new 

eighbours. The procedure terminates when no new neighbours 

re added at the end of an iteration. ORGEN suffers from a number 

f problems. First it is highly initialisation dependant. The authors 

uggest performing � 2 sub problem and choosing the largest valued 

lements as the initialisation pool for each x i . This can be slow as 

hen D is large and the � 2 problem lacks rigorous guarantees of 

uccessful subspace identification. Second the repeated computa- 

ion of elastic net is problematic when the active set grows large. 

his is a very real concern as termination only occurs when the ac- 

ive set stops growing. The active set could grow to the full size of 

he data set. Third the claim of improved running time is not evi- 

ent. The authors show running times for single x i instead of the 

hole data X and do not compare to different approaches such as 

16] or [26] . 

Heuristic methods are often incredibly simple. For example Ro- 

ust Subspace Clustering via Thresholding (TSC) [26] essentially 

erforms nearest neighbour based spectral clustering. For each 

oint the nearest neighbours are found and the affinity matrix is 

onstructed using exponential inner product between each of the 

eighbours. However, the subspace identification accuracy is prob- 

ematic. 

. Efficient sparse subspace clustering 

There is still much room to improve, because there are prob- 

ems of existing methods, compromising either efficiency or accu- 

acy. Our contribution to efficient subspace clustering is inspired 

y the sparsity of SSC. It has been shown repeatedly that each data 

oint can be reconstructed by only d i (the dimensionality of the 

nderlying subspace) other data points from its corresponding sub- 

pace [12,14,27] . This is the basis of SSC’s operation. By finding the 

parsest representation one will be left with the minimum sup- 

ort to represent a data point x i , corresponding to data points in 

he same subspace. Therefore it is clear that blindly considering all 

ther points as candidates for reconstruction is very wasteful since 

nly a relative few points will be left as support. Furthermore the 

rocess is very intensive in terms of memory requirements. The 

ost efficient algorithm for solving SSC requires O 

(
N 

2 
)

FLOPs per 

teration and the storage of O 

(
N 

2 
)

over the algorithm’s entire op- 

ration w.r.t. Z . 

Therefore if we can safely prune a vast majority of data points 

s candidates when reconstruct one data point, then we can mas- 

ively reduce computational and memory load. In other words this 



Y. Guo, S. Tierney and J. Gao Signal Processing 185 (2021) 108082 

Fig. 1. Left: Singular values of several faces (different colours) from the Extended Yale B dataset. Right: Average percentage of true positive and false positive nearest neigh- 

bour selection from the entire Extended Yale B dataset and correspondingly, in green, a plot of when the sufficient true positives are reached on average. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Left: Singular values of several motions from the Hopkins 155 Motion Dataset. Right: Average percentage of true positive and false positive nearest neighbour selection 

from the checkerboard and traffic sequences in the Hopkins 155 Motion Dataset dataset and correspondingly, in green, a plot of when the sufficient true positives are reached 

on average. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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here. First in the case of noise free data: 
eans that for any column of Z , say z i , we would only solve for

 small subset of the entries of z i while the other entries are 

eft zero. To this end we propose kSSC, in which we limit each 

ata point to be represented by at most k other data points se- 

ected simply by kNN (k-Nearest Neighbours) with normalised in- 

er product. Thus the relaxed objective function for kSSC is‘ 

in 

z i 
λ‖ z i ‖ 1 + 

1 

2 

N ∑ 

i 

‖ x i −
∑ 

j∈ �i 

x j z i j ‖ 

2 
F (4) 

here �i is the set of data points to use for reconstruction of data 

oint i . Under this objective we can reduce both the memory and 

LOP requirements to O 

(
kN 

)
w.r.t. z i , which when k � N provides 

assive savings. 

Evidently the success of kSSC relies heavily upon both the size 

f k and the scheme that is used to select �i . First one should

lways choose k ≥ d i since each data point needs at a minimum 

 i other points for reconstruction. Fig. 1 shows singular values for 

ultiple subspaces (a single subspace corresponds to a single sub- 

ect or face) from the Extended Yale B dataset. The point at which 

he singular values begin to trail off reveals the underlying sub- 
3 
pace dimension d i , which in this case is 9 [12] . Therefore in that

ase we should set k ≥ 9 . Similarly in Fig. 2 we perform the same

nalysis on the motion segmentation dataset and find that the sub- 

pace dimension is 4. Since in almost all cases d i � N and thus 

 � N, the computational and memory requirements of kSSC will 

e much lower than SSC. However even in cases where there is 

o prior information about d i ’s, one can set a large, conservative 

alue for k with little impact on overall performance when k � N, 

or example let k = D . 

Moreover, one must choose �i such that it contains the “right”

ata points from x i ’s subspace. Uniformly random sampling k 

oints is a poor choice since the selected ones may not belong to 

he same subspace. Recent works such as [18,24,27] have demon- 

trated that even in noisey cases or cases of subspace intersection 

hat the points closest to each x i in the ambient space usually cor- 

espond to the most strongly connected data points in Z , i.e. data 

oints from the same subspace. We come to the same conclusions 

nd most importantly, we provide the conditions and probability 

ounds of the effectiveness of selecting points from the subspace 

sing k nearest neighbours. We present our two central theorems 
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t

heorem 1. Given the conditions in Corollary 9 , if A �, 1 ≤
in � 

{ √ 

d � δ

2 
√ 

(d 1 ∧ d � )(t log N � + t 2 ) 

} 

∀ l = 2 , . . . , L, where L is the total num- 

er of subspaces, then the points selected for any sample y from 

ubspace S 1 by using k NN with k = k 0 contains no samples from

ther subspaces but S 1 with probability at least 1 − (L − 1) e −t −
xp ( −k 0 (n − ln n + 1) − (n − 1) ) . 

Second in the case of noisey data with the assumption that the 

oise is Gaussian with zero mean and variance σ 2 : 

heorem 2. Given the conditions in Corollary 9 and the noise model 

A.10) , for a small positive ε, if A �, 1 ≤ min � 

{ √ 

d � (δ−6 ε) 

2 
√ 

(d 1 ∧ d � )(t log N � + t 2 ) 

} 

, 

hen the samples selected for any sample y 1 from subspace 

 1 by using k NN with k = k 0 contains no samples from other 

ubspaces but S 1 with probability at least 1 − (L − 1) e −t −
xp ( −k 0 (n − ln n + 1) − (n − 1) ) − 2 L exp (1 − cε2 

σ 2 ) − L Dσ 4 

ε2 . 

We leave the lengthy proofs, detailed conditions and symbols 

efinitions in the appendix in order not to obstruct the flow. 

heorem 1 says that for subspace clustering purpose we can sim- 

ly set �i for x i as its k nearest neighbours from the original am- 

ient space when N is large. The neighbours are very likely coming 

rom the same subspace as the given one under some assumptions 

isted in Theorem 1 . However when X is subject to noise, the as-

umptions are stronger with also lower probability for kNN to se- 

ect neighbours from the same subspace. For this reason we rec- 

mmend setting k well above d i to provide sufficient head room. 

urthermore we suggest increasing k as the magnitude of expected 

oise increases, since as noise increases, so does the likelihood of 

alse positive neighbour selection as shown in Theorem 2 . More- 

ver, these results suggest that a further subspace identification 

rocedure is absolutely necessary and hence gives rise to kSSC. In 

igs. 1 and 2 , we demonstrate this effect on the Yale and Rigid

otion datasets respectively. We note that the required value for k 

o select sufficient true positives via kNN exceeds d i . This is due to

he presence of noise and corruptions in the data and the some- 

imes small distance between subspaces, particularly for the Ex- 

ended Yale B dataset. Although still extremely small relative to N. 

In summary we propose to eliminate the calculation of redun- 

ant elements of Z by computing only k rather than N coefficients 

or each x i . An overview of the entire method can be found in

lgorithm 1 . Subspace identification accuracy can be exactly main- 

lgorithm 1 kSSC. 

equire: X 

D ×N - observed data, k - number of neighbours, L - 

number of subspaces 

1: for i → N in parallel do 

2: Set �i by kNN 

3: Obtain coefficients z i by solving ( ?? ) 

4: end for 

5: Form the similarity graph 

W = | Z | + | Z | T 
(5) 

6: Apply N-Cut to W to partition the data into L subspaces 

7: return Subspaces { S i } L i =1 

ained from SSC provided that the following conditions are met: 

a) k is equal to or greater than max (d i ) , and (b) the elements of

i are nearest neighbours of x i . These conditions are sufficient but 

ot necessary. In some cases clustering accuracy could be main- 

ained when k is less than max (d i ) or different filtering method is 

sed. However when these conditions are met kSSC ensures that 

SC’s guarantee of correct subspace identification and robustness 

o noise is preserved since kNN is guaranteed to correctly identify 
4 
eighbours (see Appendix A ). Furthermore kSSC is easily solved in 

arallel as �i and each column of Z is independent. 

.1. Optimisation 

We use FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) 

28,29] to solve (4) . FISTA is an accelerated gradient descent 

cheme for solving objective functions containing a smooth part 

nd non-smooth part as is the case with (4) . One of the key abil-

ties of FISTA is that it guarantees a convergence rate of O 

(
1 
t 2 

)
here t is the iteration counter. This is achieved by dynamically 

etting the rate of descent parameter (Lipschitz constant) and us- 

ng the two previous iteration points to accelerate the gradient de- 

cent. Furthermore FISTA provides the aforementioned ability with 

inimal computational and memory overhead. Each iteration of 

ISTA only requires solving a closed form proximity problem which 

n the case of � 1 minimisation can be solved at an element wise 

evel. This allows us to resolve the selective fitting term of (4) since 

e can enforce it by ignoring the elements of Z that are outside of 

. 

We begin by re-writing, with some abuse of notation, the orig- 

nal objective (4) for a single column of Z 

in 

z i 
L = λ‖ z i ‖ 1 + 

1 

2 

‖ x i − X i z i ‖ 

2 
2 (1) 

here z i = z �i i 
the vector of elements indexed in �i and X i = 

 (: , �i ) 
the matrix formed from the columns of X indexed by �i . 

ote that we have removed the constraint diag (Z ) = 0 since we 

nforce it by ensuring that no diagonal entries are present in each 

i . 

At each iteration in the FISTA scheme one must solve the � 1 
roximal linearised form of L . Denote the linearisation of L at point 

 

t 
i 

in 

z i 

˜ L ρ( z i , z 
t 
i ) = λ‖ z i ‖ 1 + 

ρ

2 

‖ z i −
(

z t i −
1 

ρ
∂F (z t i ) 

)
‖ 

2 
2 , (2) 

here F = 

1 
2 ‖ x i − X i z i ‖ 2 2 and correspondingly ∂F = −X 

T 
i 
(x i − X i z 

t 
i 
) .

he solution to (2) is given by the closed-form � 1 shrinkage func- 

ion S τ as follows 

 λ
ρ
(z t i ) = sign 

(
z t i −

1 

ρ
∂F (z t i ) 

)
max 

(
| z t i −

1 

ρ
∂F (z t i ) | − λ

ρ
, 0 

)
. 

(3) 

e refer readers to [30,31] for further details. The full algorithm is 

utlined in Algorithm 2 . 

lgorithm 2 Solving (4) via FISTA. 

equire: r i = ∞ , z i = 0 , j i = 0 , αi = 1 , λ, ρi , γ , ε
while r t 

i 
− r t −1 

i 
≥ ε do 

while L (S λ
ρ
(j t 

i 
)) ≥ ˜ L ρ (S λ

ρ
(j t 

i 
) , j t 

i 
) do 

ρi = γ ρi 

end while 

z t +1 
i 

= S λ
ρ
(j t 

i 
)) 

αt +1 
i 

= 

1+ 
√ 

1+4 αt 
i 

2 ) 

2 

j t +1 
i 

= z t +1 
i 

+ 

(
αt 

i 
−1 

αt +1 
i 

)
(z t +1 

i 
− z t 

i 
) 

r t +1 
i 

= L (S λ
ρ
(j t 

i 
)) 

end while 

.2. Segmentation 

After solving (4) for each z i the next step is to form Z and use

he information encoded in Z to assign each data point to a sub- 
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Fig. 3. Left: A comparison of running times with increasing N between kSSC, SSC and their various implementations. Right: A zoomed comparison of running times with 

increasing N for kSSC relaxed and exact variants (taken from the Left plot). Note that the scales are different since kSSC takes a fraction of the running time of SSC. 

s

Z

r

i

t

l

b

t

i

n

n

b

[

T  

fi

g

b

b

δ

L

T

Z

E

3

s

i

x

a

p

f

u

t

o

b  

r

t

a

e

t

t

t

f

b

m

s

F

W

c

t

t

n

t

i

t

l

t

4

o

i

M

S

h

e

s

4

t

S

w

c

n

P

pace. A robust approach is to use spectral clustering. The matrix 

 can be interpreted as the affinity or distance matrix of an undi- 

ected graph. Element Z i j corresponds to the edge weight or affin- 

ty between vertices (data points) i and j. Then we use the spec- 

ral clustering technique, Normalised Cuts (N-Cut) [13] in particu- 

ar as in SSC, to obtain final segmentation. Since we expect Z to 

e sparse in most cases N-Cut should have reasonable computa- 

ion time, particularly in comparison to a full Z matrix. However 

n cases where N-Cut is too slow one can use approximate tech- 

iques such as the Nyström method [32] . 

Spectral segmentation techniques such as N-Cut require the 

umber of subspaces p as a parameter. In the case where the num- 

er of subspaces is unknown one can use either the Eigen-gap 

14,33,34] or the closely related SVD-gap heuristic of Liu et al. [35] . 

he Eigen-gap heuristic uses the eigenvalues of Z , see Eq. (5) , to

nd the number of subspaces. It does this by finding the largest 

ap between the ordered eigenvalues, the number of eigenvalues 

efore this point is treated as the number of clusters. Let { δi } N i =1 
e the descending sorted eigenvalues of Z such that δ1 ≥ δ2 ≥ . . . ≥
N . Then L can be estimated by 

 = argmax 
i =1 , ... ,N−1 

(δi − δi +1 ) 

he SVD-gap heuristic is the same procedure with eigenvalues of 

 replaced with singular values. Further improvements upon the 

igen-gap heuristic have been made, see [33] for details. 

.3. Complexity analysis 

The complexity of kSSC only varies from SSC w.r.t. Z as can be 

een from Algorithm 1 and a comparison of Algorithm 2 . It differs 

n two ways. First we must find the k nearest neighbours of each 

 i . Fortunately fast approximate methods exist for computing kNN 

nd are freely available in packages such as FLANN [36] . The com- 

utation time for kNN is on the order of O 

(
N log N 

)
and O 

(
log N 

)
or preprocessing and searching respectively [36–39] . 

Second is the updating of z i at each iteration. Since we are only 

pdating k entries of each column of Z instead of the full N en- 

ries the FLOP count is drastically reduced. Similarly the amount 

f memory required for updating Z is drastically reduced. They are 

oth reduced from O 

(
N 

2 
)

to O 

(
N 

)
. We call the solver for (2) the

elaxed variant and the solver for (3) the exact variant. Note that 

he relaxed variant has markedly lower FLOP counts than the ex- 

ct variants. This assumes one execution of the � shrinkage op- 
1 

5 
rator per iteration. However in the case of FISTA, a single itera- 

ion may require many executions of the shrinkage operator due to 

he search scheme for optimal rate of descent parameter. In prac- 

ice we find that solving the relaxed variant by FISTA is usually 

aster since choosing ρ is not a difficult task and can be estimated 

y running the solver on a small sub section of the data. Further- 

ore the FISTA based solver will converge much faster than other 

olvers. We provide a brief sample of running time differences in 

ig. 3 to illustrate the difference between implementation variants. 

e also demonstrate the effect of varying the number of available 

ores for the parallel implementations in Fig. 4 . We find that in 

he case of SSC as the number of cores increase the computation 

ime also increases, which indicates that the performance of SSC is 

ot as straight forward. In fact the performance is markedly worse 

han expected due to the overhead of sharing and multiple access- 

ng of the full data matrix X , which further reinforces the point 

hat SSC does not scale well with large datasets with naive paral- 

elisation. On the other hand, kSSC benefits greatly from increasing 

he core count and eventually plateaus due to it’s own overhead. 

. Synthetic evaluation 

In this section we use synthetic data to experimentally evaluate 

ur hypothesis proposed in Section 3 and the therotetical analysis 

n Appendix A that kSSC can match the clustering accuracy of SSC. 

In an effort to maximise transparency and repeatability, all 

ATLAB code and data used for these experiments and those in 

ection 5 can be found online at https://github.com/sjtrny/kSSC . To 

elp evaluate consistency parameters except for k were fixed for 

ach experiment, which we further explain in the following sub- 

ections and are recorded in the code repository. 

.1. Metrics 

Segmentation accuracy was measured using the subspace clus- 

ering error (SCE) metric [12] , which is defined as 

CE = 

num. of misclassified points 

total num. of points 
× 100 , (4) 

here lower subspace clustering error means greater clustering ac- 

uracy. In cases where we inject extra noise we report the level of 

oise using Peak Signal-to-Noise Ratio (PSNR) defined as 

SNR = 10 log 10 

(
s 2 

1 
mn 

∑ m 

i 

∑ n 
j (X i j − A i j ) 2 

)
(5) 

https://github.com/sjtrny/kSSC
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Fig. 4. Left: A comparison of running times with increasing threads/cores between kSSC, SSC and their various implementations. Right: A zoomed comparison of running 

times with increasing threads/core for kSSC relaxed and exact variants (taken from the Left plot). Note that the scales are different. 
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here X = A + N , A is the original data, N is noise and s is the 

aximum possible value of an element of A . Decreasing values of 

SNR indicate increasing amounts of noise. 

.2. Effect of subspace dimension, cluster size and ambient dimension 

As noted in other works such as [26,40] the ratio of the sub- 

pace dimension d i to the number of points in each cluster N i can 

lay a dramatic role in the clustering accuracy of SSC. However 

hese works also ignore the role of ambient dimension D . In this 

ection we demonstrate the relationship between all three vari- 

bles. 

We generate 5 subspaces and vary their dimension d i from 3 to 

0 and N i from 15 to 150. Each subspace is created using random 

rthonormal vectors as the basis with uniform random coefficients. 

or each pair of d i and N i we take the mean of the SCE over 50

rials. We repeat this again for 3 instances with D set to 30 , 50
Fig. 5. Effect of subspace dimension, clu

6 
nd 100. For this experiment we set k = 

N i 
2 or k = 1 . 5 D, whichever

s smaller. The results shown in Fig. 5 that kSSC can match the 

erformance of SSC even when k � d i . 

.3. Effect of mean, variance and noise in subspace distribution 

Note that the coefficients chosen are uniform random in syn- 

hetic data experiments in the prior subsection. This strategy is 

lso adopted by several other works in this field. However data en- 

ountered in the real world may be normally distributed in their 

espective subspace. Furthermore the data points are often cor- 

upted with noise, which we assume will be N (0 , 1) . 

For this consideration, in this experiment we vary the mean μ
nd variance σ 2 of Gaussian distributed data points using random 

rthonormal vectors as the basis for each subspace. We create 5 

ubspaces with d i = 5 , N i = 50 and D = 50 . For each pair of μ and
2 we take the mean SCE over 50 trials. We repeat this again for 
ster size and ambient dimension. 
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Fig. 6. Effect of mean, variance and noise in subspace distribution. 
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Fig. 7. Effect of subspace intersection. 
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 instances, each time increasing the noise factor, which we report 

sing PSNR. For this experiment we set k = 10 . The results shown

n Fig. 6 that kSSC can match the performance of SSC. We note 

hat the effect of mean and variance on point distribution in the 

ubspaces is significantly more pronounced as PSNR decreases. 

.4. Effect of subspace intersection 

The intersection of subspaces (shared basis vectors) plays an 

mportant role in the clustering accuracy. As previously reported 

y others, the clustering accuracy decreases as the dimension of 

ntersection increases. To demonstrate this effect and that kSSC 

an match SSC, we perform the same experiment as found in Sec- 

ion 8.1.1 of [26] and Section 5.1.2 of [40] . We generate two sub-

paces with D = 200 , d i = 10 and N i = 20 d i and vary the number

f shared basis vectors b from 0 to d i . We generate U ∈ R 

D ×2 d i −b 

andom orthonormal basis vectors and set the basis vectors for S 1 
o the first d i columns of U and correspondingly the basis for S 2 
o the last d i columns. We then take the average SCE over 20 trials 

or each b. Results are reported in Fig. 7 , where we can clearly see

hat kSSC closely matches the performance of SSC. 

. Experimental evaluation 

In this section, we evaluate the clustering performance of kSSC 

n semi-synthetic and real world datasets. We vary the amount 

f additional noise in some of these experiments to compare the 

obustness of kSSC against the pre-existing competitor algorithms 

reedy Feature Selection (GFS), Greedy Subspace Clustering (GSC), 

calable Sparse Subspace Clustering (SSSC) and Robust Subspace 

lustering via Thresholding (TSC). Additionally we use SSC to gauge 

aseline performance. 

The running times of the experiments carried out in 

ections 5.1 and 5.3 can be found in Fig. 8 . Since these experiments

re small in size the running time reduction of kSSC is not that sig- 

ificant. However these tests indicate that kSSC matches the clus- 

ering accuracy of SSC very closely, an attribute that is not found 

n other methods. We perform a test in Section 5.2 to evaluate the 

unning time of kSSC for a large scale data set. 
7 
.1. Thermal infrared data segmentation 

We assemble synthetic data from a library of thermal infrared 

TIR) hyper spectral mineral data. The library consists of 120 pure 

aterials spectra samples with D = 321 . We generate 5 subspaces 

ith d i = 5 . For each subspace we randomly select 5 spectra in 

he TIR library and generate 50 points using uniform random non- 

egative coefficients. We then corrupt the data with various levels 

f standard Gaussian noise and evaluate clustering performance of 

ur kSSC and other contenders. The experiment is repeated for 50 

rials for each level of noise to obtain an average SCE. Results can 

e found in Fig. 9 . kSSC closely tracks the performance of SSC and

utperforms all other methods. 

.2. Large scale thermal infrared segmentation 

The main goal of kSSC is to maintain SSC’s clustering accuracy 

ut in a fraction of the time. To confirm this ability, we create a 



Y. Guo, S. Tierney and J. Gao Signal Processing 185 (2021) 108082 

Fig. 8. Left: Median running time of each tested algorithm for the Thermal Infrared Data Segmentation experiment found in Section 5.1 . Right: Median running time of 

of each tested algorithm for the Motion Segmentation experiment found in Section 5.3 . Overall in these experiments the benefit of kSSC is slight in comparison to other 

methods since N is low. We refer to readers Section 5.2 for a comparison in running time where N is large. 

Fig. 9. Semi-synthetic Hyperspectral TIR. 

Fig. 10. Running time of large scale experiment. The size of the largest tested data 

set is 20,0 0 0. 
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arge scale semi-synthetic dataset from the TIR data used in the 

revious subsection. We generate data in a similar fashion to the 

revious section. However for each subspace we generate N i points 

sing uniform random coefficients where we vary N i from 100 to 

0 0 0. Therefore the size of the largest tested data set is 20,0 0 0.

or this experiment, SSC, GFS and GSC stop early since they do not 
8 
cale well in this application (see Section 2 ). From Fig. 10 we find

hat kSSC has similar run time characteristics to TSC and SSSC. 

.3. Hopkins 155 motion segmentation 

The aim of this experiment is to assign feature points extracted 

rom a video to their corresponding motion or object in the scene. 

s previously mentioned, it has been shown in Elhamifar and Vi- 

al [12] that these features trajectories actually correspond to low- 

imensional subspaces. The data from this experiment is drawn 

rom the rigid motion sequences of the Hopkins 155 dataset [41] . 

hese sequences have around 20 0–50 0 feature trajectories and 

ange in number of frames from 20 to 60. Results can be found 

n Fig. 11 . Again kSSC closely tracks the performance of SSC and 

onsistently performs as the PSNR decreases. 

.4. Extended Yale B face clustering 

The aim of this experiment is to cluster unique human subjects 

rom a set of face images. We draw our data from the Exteded 

ale Face Database B [42] . The dataset consists of approximately 

4 photos of 38 subjects under varying illumination. We select 

hree subjects randomly then resample their images to 96 × 84 and 

orm data vectors x i ∈ R 

2016 by concatenating them together. This 

est was repeated 50 times with new random subjects each time. 

his is a challenging dataset since the original data is already cor- 

upted by shadows from the varied illumination. Results can be 

ound in Table 1 . Surprisingly we find that kSSC even outperforms 

SC for this task, which may be due to the aggressive kNN pre- 

creening process removing all but the most similar data points. In 
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Fig. 11. Rigid motion segmentation. 

Table 1 

Face clustering results from the extended Yale B dataset. 

Mean Median Min Max Std Mean run time (s) 

SSC 28.1% 31.5% 0.0% 65.6% 24.5% 21.38 

GSC 30.6% 29.9% 0.5% 55.2% 15.6% 30.38 

TSC 58.1% 61.2% 36.5% 66.1% 7.3% 7.59 

SSSC 59.5% 58.6% 31.8% 100.0% 17.2% 0.66 

kSSC 22.3% 17.2% 0.0% 65.1% 19.3% 30.38 
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his dataset, there are many face images of different subjects that 

ontain large regions of highly similar data due to the extreme oc- 

lusions from shadows. We believe the nearest neighbour filtering 

election helps to prevent the possibility of extreme false positives 

onnections in Z . Note that in this case, kSSC is slower than SSC. 

his is caused by the overhead of kSSC pre-screening process using 

NN. There is no computation saving when k and N are close. 

. Conclusion 

In this paper we proposed a new algorithm, kSSC, to accurately 

nd tractably approximate SSC for large scale datasets. By accu- 

ately screening out the vast majority of eligible data points as 

eighbours the memory and computational requirements are re- 

uced from O 

(
N 

2 
)

to O 

(
N 

)
. Our theoretical analysis justifies the 

NN screening process, which is able to find true neighbours from 

he same subspace with high probability. Moreover our empirical 

esults on synthetic and real data demonstrate that kSSC outper- 

orms the existing SSC approximation methods in terms of accu- 

acy and matches or beats the computational and memory require- 

ents. 
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ppendix A. Analysis of subspace discovery by kNN 

We need a concentration of measure lower bound on sphere to 

tart with. 

heorem 3. Let μ(A δ ) be the uniform probability measure on sphere 

 

d−1 embedded in R 

d and A δ is a cap centered around a point 

 on S 
d−1 , defined as A δ = { x � y ≥ δ| y ∈ S 

d−1 and δ ∈ [0 , 1] } . Then

(A δ ) ≥ π(1 −δ) d−1 

4(d−1) 
. 

roof. We start with defining A r = { d(x , y ) ≤ r| y ∈ S 
d−1 and δ ∈

0 , 1] } , where d(x , y ) is the geodesic metric on sphere. Write S d−1 

he volume of S d−1 . Then μ(A r ) = 

1 
S d−1 

∫ r 
0 sin 

d−2 (x ) dx as in Beresty-

ki [43] . Assume r is small, i.e. r ∈ [0 , π2 ] . Observe that sin (x ) ≥ 2 
π x

hen x ∈ [0 , π2 ] . Therefore, 

(A r ) ≥ 1 

S d−1 

∫ r 

0 

(
2 

π
x 

)d−2 

dx = 

1 

S d−1 

( 2 π ) d−2 r d−1 

d − 1 

. 

e then bound S d−1 from above. S d−1 = 

∫ π
0 sin 

d−2 (x ) dx . Taking one

in (x ) out and integrating by parts leads to S d−1 = 

d−3 
d−2 

S d−3 and ap-

arently S d−1 ≥ S d−3 . Use the inequality recursively and note that 

 3 = 

π
2 and S 2 = 2 , we have S d−1 ≤ 2 , which leads to 

(A r ) ≥
( 2 π ) d−2 r d−1 

2 d − 2 

. 

onvert the metric to inner product as the following using r = 

cos (δ) . μ(A δ ) ≥ ( 2 π ) d−2 acos d−1 (δ) 

2 d−2 
. Note that for r ∈ [0 , π2 ] and δ ∈

0 , 1] , acos (δ) ≥ π
2 (1 − δ) , therefore, 

(A δ ) ≥
π(1 − δ) d−1 

4( d − 1) 
. 

�

The above lower bound of measure for sphere cap can be used 

s the lower bound of the probability of points falling into A δ when 

he points are uniformly distributed on S 
d−1 , i.e. 

 (y ∈ A δ ) ≥
π(1 − δ) d−1 

4(d − 1) 
= p 0 . (A.1) 

lthough it does not seem to be a large probability, when the 

umber of points grows large, the number of samples falling into 

he same patch A δ becomes large, as shown in the following 

emma. 

emma 4. Let y be the random variable uniform distributed on 

phere S d−1 embedded in R 

d and A δ is a cap centered around a point 

 on S d−1 , when N ≥ 4 k 0 (d−1) 

π(1 −δ) d−1 
, the probability of k 0 points falling 

nto A δ is lower bounded, i.e. 

 (K > k 0 ) ≥ 1 −
k 0 ∑ 

k =0 

(
N 

k 

)
p k 0 (1 − p 0 ) 

N−k , (A.2) 

https://doi.org/10.13039/501100000923
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here N is the total number of points. 

roof. First, it is easy to check that f (x ) = x k (1 − x ) N−k is mono-

onically decreasing when 

k 
N < x < 1 . Using probability bound 

n (A.1) , we obtain that P (K = k ) ≤
(

N 
k 

)
p k 

0 
(1 − p 0 ) 

N−k . Connect

A.1) with monotonicity requirement, we have p 0 > 

k 
N and the 

ondition for the number of points as stated in the theorem, i.e. 

 ≥ 4 k 0 (d−1) 

π(1 −δ) d−1 
. Using P (K > k 0 ) = 1 − ∑ k 0 

k =0 
P (K = k ) , we complete

he proof. �

The probability seems complicated. Enlightened by the asym- 

otic approximation of Poisson to Binomial, we seek a proper λ for 

oisson that is larger than Binomial with N and p 0 . To this end, we

rst have the following lemma. 

emma 5. Given Binom( N, p) the binomial distribution 

ith N trials and p ≥ 0 success probability. When p ≥

2 
∑ k −1 

i =0 
ln (N−i ) −k ln (N−k 0 ) 

N−k 

] 1 
2 

≡ f (k ) , 

N 

k 

)
p k (1 − p) N−k ≤ e −(N−k 0 ) p 

((N − k 0 ) p) k 

k ! 
(A.3) 

or a given k such that k ≤ k 0 . 

roof. The R.H.S of Eq. (A.3) is P (K = k ) under Poisson distri-

ution Pois (λ) where λ = (N − k 0 ) p. We first observe that both

ides of the inequality are non-negative so we can consider nat- 

ral logarithm transform, i.e. ln (·) . Note that ln (1 − x ) = 

∑ ∞ 

n =1 − x n 

n 

nd therefore, when x > 0 , we have ln (1 − x ) ≤ −x and ln (1 − x ) ≤
x − 1 

2 x 
2 . 

When k = 0 , the ln of L.H.S of (A.3) is N ln (1 − p) ≤ −Np ≤
(N − k 0 ) p which is the ln of the R.H.S of (A .3) . So (A .3) holds

hen p ≥ 0 . When k > 0 , we have 

ln 

[(
N 

k 

)
p k (1 − p) N−k 

]
(A.4) 

= 

k −1 ∑ 

i =0 

ln (N − i ) + (N − k ) ln (1 − p) − ln (k !) + k ln (p) 

≤
k −1 ∑ 

i =0 

ln (N − i ) − (N − k ) 
(

p + 

1 

2 

p 2 
)

− ln (k !) + k ln (p) 

≤
k −1 ∑ 

i =0 

ln (N − i ) − 1 

2 

(N − k ) p 2 − (N − k 0 ) p − ln (k !) + k ln (p) 

≤ k ln (N − k 0 ) − (N − k 0 ) p − ln (k !) + k ln (p) 

here in the second line we use ln (1 − x ) ≤ −x − 1 
2 x 

2 when x > 0

y series expansion of ln (1 − x ) at x = 0 , and in the fourth line we

pply the condition in the lemma to p 2 only. Note that the end of

he above inequality is exactly the ln of the R.H.S of Eq. (A.3) . �

This lemma says that P (Binom (N, p) = k ) ≤ P (Pois ((N − k 0 ) p) =
 ) when the conditions are satisfied in the Lemma especially the 

ower bound of p. However, the lower bound of p varies along k . 

ortunately it is easy to find a unified lower bound as stated in the 

ollowing corollary. 

orollary 6. When p ≥ f (k 0 ) = 

[
2 

∑ k 0 −1 

i =0 
ln (N−i ) −k 0 ln (N−k 0 ) 

N−k 0 

] 1 
2 

, 

 (Binom (N, p) = k ) ≤ P (Pois ((N − k 0 ) p) = k ) for any k such that

 ≤ k ≤ k . 
0 

10 
roof. Following from Lemma 5 , p ≥ max 
k ∈{ 0 , ... k 0 } 

f (k ) will satisfy all k 

hat are no larger than k 0 . Also 

f (1) = 

√ 

2 ln 

(
N 

N−k 0 

)
N − 1 

≤

√ 

2 ln 

(
N 

N−k 0 

)
N − 2 

≤

√ 

2 

(
ln 

(
N 

N−k 0 

)
+ ln 

(
N−1 
N−k 0 

))
N − 2 

= f (2) . 

y induction, we can easily show that f (k ) is non-decreasing along 

 . As such, 

max 
 ∈{ 0 , ... k 0 } 

f (k ) = f (k 0 ) 

�

Corollary 6 shows that when the success probability p in bi- 

omial distribution Binom (N, p) is not less than f (k 0 ) , binomial 

istribution can be upper bounded by Poisson distribution with 

= (N − k 0 ) p. Therefore, the lower bound in (A.2) in Lemma 4 can

e replaced by the probabilities from Poisson distribution. How- 

ver we need to balance the values of N and p 0 . The the following

emma is for this purpose. 

emma 7. Let y be the random variable uniform distributed on 

phere S d−1 embedded in R 

d and A δ is a cap centered around a point 

 on S 
d−1 , when p 0 ≥ k 0 +1 

N−k 0 
and N � k 0 , the probability of k 1 and

 1 ≤ k 0 points falling into A δ is lower bounded, i.e. 

 (K > k 1 ) ≥ 1 − P (P ois ((N − k 0 ) p 0 ) ≤ k 1 ) (A.5)

roof. First notice that 
∑ k −1 

i =0 ln (N − i ) − k ln (N − k 0 ) = 

 k 
i =0 ln ( N−i 

N−k 0 
) , and ln (1 + x ) ≤ x when x > 0 using series ex-

ansion. Therefore, 

f (k 1 ) ≤ f (k 0 ) = 

[
2 

∑ k 0 −1 
i =0 

ln (N − i ) − k 0 ln (N − k 0 ) 

N − k 0 

] 1 
2 

(A.6) 

≤

√ 

2 

∑ k 
i =0 

k 0 −i 
N−k 0 

N − k 0 
= 

√ 

k 0 (k 0 + 1) 

(N − k 0 ) 2 
≤ k 0 + 1 

N − k 0 
. 

o when p 0 ≥ k 0 +1 

N−k 0 
, the conditions in Lemma 6 are satisfied. Ap- 

arently, 
k 0 +1 

N−k 0 
≥ k 0 

N , which enable us to combine Lemma 4 to give 

he following 

 (K > k 1 ) ≥ 1 −
k 1 ∑ 

k =0 

P (P ois ((N − k 0 ) p 0 ) = k ) , 

hich is the required result in this lemma. �

Lemma 7 shows that when the number of data points N is 

arge, the probability of at least k 1 points fall into a small patch 

s lower bounded if p 0 ≥ k 0 +1 

N−k 0 
. There is a lower bound for N as 

ell written as N 0 . When N ≥ N 0 , this probability lower bound can 

e large. We have the following theorem for this. 

heorem 8. Assume the same settings and conditions in Lemma 7 . 

et N 0 = 

k 0 +1 
p 0 

+ k 0 = 

4(d−1) ( k 0 +1 ) 

π(1 −δ) d−1 
+ k 0 , for any n ≥ N 0 

N 0 −k 0 
> 1 , and

 1 ≤ k 0 , if N = n (N 0 − k 0 ) , then 

 (K > k 1 ) ≥ 1 − exp 

(
−n (k 0 + 1) + k 1 

(
ln 

n (k 0 + 1) 

k 1 
+ 1 

))
(A.7) 

roof. It is easy to see that when N ≥ N 0 , the conditions in

emma 7 are satisfied. Then (A.5) holds and λ = (N − k 0 ) p 0 =
 (k + 1) in Poisson distribution according to the choice of N and
0 0 
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 . Applying Chernoff bound to the Poisson distribution completes 

he proof. �

Let k 1 = k 0 , we have the following corollary immediately. 

orollary 9. Follow the same settings and conditions in Theorem 8 . 

et N 0 = 

k 0 +1 
p 0 

+ k 0 = 

4(d−1) ( k 0 +1 ) 

π(1 −δ) d−1 
+ k 0 , for any n ≥ N 0 

N 0 −k 0 
> 1 , if N =

 (N 0 − k 0 ) , then 

 (K > k 0 ) ≥ 1 − exp ( −k 0 (n − ln n + 1) − (n − 1) ) 

roof. This is just result of replacing k 1 by k 0 in Theorem 8 and

he application of ln (1 + x ) ≤ x . �

emark. k 0 is the upper bound for the number of nearest neigh- 

ours to be considered, which is used to construct the Poisson ap- 

roximator. Apparently, k 0 is connected to N 0 , the baseline number 

f data points required to have large probability. k 1 is the actual 

umber of nearest neighbours in KNN searching. In real applica- 

ions, one should have k 1 = k 0 . See Corollary 9 . Theorem 8 gives

he values of all these variables and associated probabilities. The 

robability is ultimately determined by δ, d and n . Larger proba- 

ility requires large N, and it grows exponentially with dimension 

. 

Next we bound the inner product between samples from dif- 

erent subspaces. Here we use the arguments in Lemma 7.5 in 

oltanolkotabi et al. [40] . 

emma 10. Let A ∈ R 

d 1 ×N 1 be a matrix with columns uniformly dis- 

ributed in S d 1 −1 , y ∈ R 

d 2 be a vector uniformly sampled from S 
d 2 −1 

nd a deterministic matrix � ∈ R 

d 1 ×d 2 . For t > 0 ∈ R , the inner prod-

ct between any column in A and �y is bounded as follows 

 

� 
i �y ≤ 2 

√ 

t log N 1 + t 2 ‖ �‖ F √ 

d 1 

ith probability at least 1 − e −t . 

roof. Using Borell’s inequality on the mapping y �→ ‖ �y ‖ with 

ipschitz constant of σ1 , the largest singular value of � leads to 

 (‖ �y ‖ > ε + 

√ 

E‖ �y ‖ 

2 ) < e −
1 
2 ε 

2 /σ 2 
1 . 

s E‖ �y ‖ 2 = ‖ �‖ 2 
F 
/d 2 , we choose ε = (b − 1) ‖ �‖ F / 

√ 

d 2 so that 

 (‖ �y ‖ > 

b‖ �‖ F √ 

d 2 
) < e −

1 
2 (b−1) 2 /d 2 , (A.8) 

here we used the fact that ‖ �‖ F /σ1 > 1 . 

The next step is to bound the inner product of a column in 

 , i.e. a i , i = 1 . . . N 1 , with any vector x ∈ R 

d 1 by upper bound of

pherical caps 

 (a � i x > ε‖ x ‖ ) < e −
1 
2 d 1 ε 

2 

, ∀ i 

hich leads to the following using the union bound 

 ( 
⋃ 

i 

a � i x > ε‖ x ‖ ) < N 1 e 
− 1 

2 d 1 ε 
2 

. (A.9)

et ε = 

√ 

2 log N 1 +2 t 

d 1 
, b = 

√ 

2 d 2 t . Substituting (A.8) to (A.9) gives 

 ( 
⋃ 

i 

a � i �y > 

2 

√ 

t log N 1 + t 2 ‖ �‖ F √ 

d 1 
) ≤ e −t . 

herefore 

 ( 
⋂ 

i 

a � i �y ≤ 2 

√ 

t log N 1 + t 2 ‖ �‖ F √ 

d 1 
) ≥ 1 − e −t , 

hich concludes the proof. �
11 
The above gives the upper bound of the inner product, which 

onnects to samples in subspaces with the following corollary. 

orollary 11. Let X ∈ R 

d×N 1 be a matrix with columns formed by 

ampling uniformly from subspace S 1 with dimensionality d 1 and 

 ∈ R 

d uniformly drawn from subspace S 2 with dimensionality d 2 . The 

nner product between any column in X and y is bounded as the fol- 

owing 

 

� 
i y ≤

2 A 1 , 2 

√ 

min { d 1 , d 2 } (t log N 1 + t 2 ) √ 

d 1 

ith probability at least 1 − e −t for t given previously. 

roof. This is the simple application of 10 with � = U 

� 
1 U 2 where 

 j ( j = 1 , 2 ) is the orthonormal basis for subspace S j and A 1 , 2 is

he affinity between subspaces S 1 and S 2 described in Definition 

.2 in Soltanolkotabi et al. [14] , which we recall here: 

 i, j = 

√ 

cos 2 θ (1) + . . . + cos 2 θ (d i ∧ d j ) 

d i ∧ d j 

here { cos 2 θ (1) , . . . , cos 2 θ (d i ∧ d j ) } are the principal angles between 

ubspaces S i and S j , and d i ∧ d j stands for min { d i , d j } . So ‖ �‖ F =
 U 

� 
1 

U 2 ‖ F = A 1 , 2 

√ 

d 1 ∧ d 2 . �

Without loss of generality, we consider a sample x 1 from sub- 

pace S 1 . The following theorem ensures that k NN will find k near- 

st neighbors of x 1 from S 1 only. 

Now we are ready to prove Theorem 1 the following. 

roof. This is a straightforward application of Lemma 9 and 

orollary 11 and the following. If 

 �, 1 ≤ min 

� 

{ √ 

d � δ

2 

√ 

(d 1 ∧ d � )(t log N � + t 2 ) 

} 

hen 

 �, 1 ≤
√ 

d � δ

2 

√ 

(d 1 ∧ d � )(t log N � + t 2 ) 

nd 

 

� y ≤ 2 A �, 1 

√ 

min { d 1 , d � } (t log N � + t 2 ) √ 

d � 
≤ δ, ∀ x ∈ S � . 

sing union bound, we obtain the required probability. �

The above discussion deals with clean data only. In the follow- 

ng we show that the results are similar for noisey data as long as 

he noise level is not too great. We begin with the following series 

f lemmas with the noise assumed to be Gaussian. 

emma 12. Let random variables X and Y in R 

d both be from Gaus- 

ian distribution N (0 , σ 2 I ) . For any given positive ε, we have 

 (| X 

� Y | > ε) ≤ dσ 4 

ε2 
. 

roof. First we assume X and Y are standard Gaussian, we have 

 (| X 

� Y | > ε) = P ((X 

� Y ) 2 > ε2 ) ≤ E(X 

� Y ) 2 

ε2 
, 

here the inequality is by Chernoff bound. Since both X and Y are 

oth standard Gaussian, they are isotropic, so we have 

(X 

� Y ) 2 = d. 

he above can be obtained by 

(X 

� Y ) 2 = E X { E X| Y (X 

� y ) 2 } = E Y (| y | 2 ) = d, 



Y. Guo, S. Tierney and J. Gao Signal Processing 185 (2021) 108082 

w

t

s

L  

a

w

G

w

G

w

c

s

Y

w

a  

t

u

c

a

L  

s  

v

P

I

P

P  

p

e

y

T

P

B

t

t

a

o

b

w

P  

u

s

a

L

w

i

y

f

A

t

y

w

R

 

 

 

 

 

 

 

 

 

 

 

[  
here the first equality comes from law of iterative expectation, 

he second from isotropic property and the last from the fact that 

um of standard Gaussian is Chi-square with d degrees of freedom. 

After proper rescaling, we obtain the result in the lemma. �

emma 13. Let X ∈ R 

d be Gaussian random variable from N (0 , σ 2 I )

nd y ∈ R 

d be a fixed vector. The following holds with any positive ε

p(| X 

� y | > ε) ≤ exp 

(
1 − cε2 

σ 2 ‖ y ‖ 

2 
2 

)
, 

here c is a constant related to sub-Gaussian norm [44] of a standard 

aussian. 

This is a straightforward application of sub-Gaussian tail to X � y 
ith rescaling. By applying linear transformation to multivariate 

aussian distribution, we can also obtain 

p(| X 

� y | > ε) = 2�
(

ε

σ

)
, 

here �() is probability function of standard Gaussian. Now we 

onsider the inner product between two unitary vectors in sub- 

paces with noise. We use the following model 

 = X + E (A.10) 

here Y is the observation, X is the clear signal in some subspace 

nd E is the noise assumed to be from N (0 , σ 2 I ) . We assume that

he observations have been rescaled properly such that X is from a 

nit sphere in S 
d−1 and the variance of the noise is bounded. 

First we note that under these conditions, the noise can in- 

rease or decrease inner product between observed signals by only 

 small amount, which is shown in the following lemma. 

emma 14. Let y i ( i = 1 , 2 ) be observations from the model in (A.10) ,

uch that y i = x i + e i , ‖ x i ‖ 2 = 1 and e i ∼ N (0 , σ 2 I ) . If P (x � 
1 

x 2 >

 ) ≥ p, we have 

 (y � 1 y 2 > v − 3 ε) ≥ p − 2 exp 

(
1 − cε2 

σ 2 

)
− dσ 4 

ε2 
. 

f P (x � 
1 

x 2 < v ) ≥ p, we have 

 (y � 1 y 2 < v + 3 ε) ≥ p − 2 exp 

(
1 − cε2 

σ 2 

)
− dσ 4 

ε2 
. 

roof. We prove the P (x � 
1 

x 2 > v ) ≥ p case. The other cases can be

roved similarly. Writing y � 
1 

y 2 in terms and using triangular in- 

quality gives 

 

� 
1 y 2 ≥ x 

� 
1 x 2 − | x 

� 
1 e 2 | − | e � 1 x 2 | − | e � 1 e 2 | . 

hen 

 (y � 1 y 2 > v − 3 ε) ≥ P (x 

� 
1 x 2 > v 

⋂ | x 

� 
1 e 2 | > ε

⋂ | e � 1 x 2 | 
> ε

⋂ | e � 1 e 2 | > ε) 

≥ p − 2 exp 

(
1 − cε2 

σ 2 

)
− dσ 4 

ε2 
. 

y using Lemmas 12 and 13 , we obtain the desired result. �

Lemma 14 states that the noise will dispel the vectors when 

hey are very close and attract them when they are far away in 

erms of the inner product induced distance. The effect of noise for 

 given sample in subspace S 1 is then to make the samples from 

ther subspaces closer to it and more difficult to separate reflected 

y the reduced probability as shown in Theorem 2 . We proceed 

ith its proof as follows. 

roof. According to the model (A.10) , y 1 = x 1 + e 1 and x 1 is on a

nit sphere. From Lemma 9 , we know that there are at least k 0 
amples from S in the patch A centred at x with probability 
1 δ 1 

12 
t least 1 − exp ( −k 0 (n − ln n + 1) − (n − 1) ) . Combining this with 

emma 14 leads to the following 

P ( min 

j∈N 1 
{ y � 1 y j } ≥ δ − 3 ε) ≥ 1 − exp ( −k 0 (n − ln n + 1) − (n − 1) ) 

−2 exp 

(
1 − cε2 

σ 2 

)
− Dσ 4 

ε2 

here N 1 ⊂ S 1 is the set of k 0 samples around y 1 in A δ patch. 

Using Corollary 11 and Lemma 14 results in that with probabil- 

ty at least 1 − e −t − 2 exp (1 − cε2 

σ 2 ) − Dσ 4 

ε2 

 

� 
i y 1 ≤

2 A �, 1 

√ 

(d 1 ∧ d � )(t log N � + t 2 ) √ 

d � 
+ 3 ε

or any y i from subspace S � . 
Similar to Theorem 1 , combing the above two statements, if 

 �, 1 ≤ min 

� 

{ √ 

d � (δ − 6 ε) 

2 

√ 

(d 1 ∧ d � )(t log N � + t 2 ) 

} 

hen 

 

� 
i y 1 ≤

2 A �, 1 

√ 

(d 1 ∧ d � )(t log N � + t 2 ) √ 

d � 
+ 3 ε ≤ δ − 3 ε

ith the probability stated in this theorem. �
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