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Subspace identification has been used extensively because its ability to detail the internal subspace struc-
ture of data, which can be used in a variety of applications such as dimension reduction, anomaly detec-
tion and so on. However, many advanced algorithms are limited on their applicability in large data sets
due to large computation and memory requirements with respect to the number of input data points. To

overcome this problem, we propose a simple method that screens out a large number of data points by

Keywords: using k nearest neighbours and subspace recovery is performed on reduced set. The proposed method is

Clustering surprisingly simple with significant reduction to both memory and computations requirements, and yet

Subspace identification possesses desirable probability lower bound for its success in the context of big data. Besides theoretical

[C()Ni\'] cati analysis, our experiments also show that our method exceeds theoretical expectations and outperforms
ptimisation

existing similar algorithms.
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1. Introduction

Identifying a union of subspaces, also called subspace cluster-
ing, is proven useful in a large number of applications. Examples
include temporal video segmentation [1,2], segmentation of hyper-
spectral mineral data [1,3], feature extraction [4,5] and many more.

We first of all formalise subspace clustering problem in matrix
algebra as follows: given a data matrix of N observed column-wise
samples X = [Xq, Xy, ..., Xy] € RP*N where D is the dimension of
the data in the ambient space. Data within X is assumed to be
drawn from a union of L subspaces {SJ»}L1 of dimensions {dj}ﬁzr
The objective of subspace clustering is to learn the corresponding
subspace labels 1 =[I;, I, ..., Iy] € NN for all the data points where
each I; € {1,...,L}. Both the number of subspaces L and the dimen-
sion of each subspace d; are unknown. To further complicate the
problem it is rarely the case that X is clean. The data is often sub-
ject to noise or corruption either at the time of capture (e.g. a dig-
ital imaging device) or during transmission (e.g. wireless commu-
nication). It is quite clear that subspace clustering is a difficult task
since one must produce accurate results quickly while contending
with numerous unknown parameters and large volume of poten-
tially noisy data.

The usefulness of subspace clustering has spurred the devel-
opment of subspace clustering algorithms, from early algebraic
methods such as Generalised Principal Component Analysis (GPCA)
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[2,6] to most recent multi-view subspace clustering [7,8], improv-
ing accuracy and robustness [9,10] in various ways.

Spectral methods have come to dominate subspace clustering
literature as they offer some advantages over other types of meth-
ods. They mainly consist of two stages: learning a similarity ma-
trix for the data then assigning cluster labels through segmen-
tation of the similarity matrix. A forerunner of spectral methods
called “Sparse Subspace Clustering” (SSC) was introduced in [11].
SSC exploits the self-expressive property of data [12] to find the
subspaces:

X; = Xz;, Zl',‘=0, Vi=1~N (1)

where z; is a vector of reconstruction coefficients for x; and z;
is the ith element in z;. To reconstruct x; € S;, one only needs d;
other points from the same subspace after removal of noise. This
means that each data point can be sparsely represented by other
points coming from the same subspace as the given one. Sparse
Subspace Clustering as its name suggests exploits this fact. Com-
bining the additive noise model, the objective function for SSC is

mZink||Z||1 + %IIX—XZH% s.t. diag(Z) =0, (2)

where Z=[z,...,zy] is the coefficients matrix and |Z|; =
i |Z;;| is the ¢; norm. Alternatively one can instead pronounce
the error in the objective as

minA|Zll + SIEI? st X = XZ+E. diag(Z) = 0 (3)

where E is the error matrix and A > 0 is used to control the trade-
off between the sparsity of Z and the error.
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To obtain the final subspace labels, the reconstruction coeffi-
cients in Z are given a secondary interpretation as the affinity or
similarity between the data points. Spectral clustering is applied
to Z. Typically N-CUT [13] is used as it produces the most accurate
segmentation even for poorly constructed affinity matrices and is
relatively fast.

While SSC has promising theoretical guarantees [12] and has
shown good performance for small evaluation datasets, it is not
widely applied in large size data sets. This is due to (1) O(N?)

memory requirements and (2) O(NZ) FLOP (floating point opera-

tions) requirements. The first is easily understood as Z € RN*N. One
could contend that Z could be stored in a sparse format, however
since the support of Z is unknown and varies between iterations of
the SSC algorithm this approach would introduce significant over-
head. Similarly the high FLOP count is due to the dimensions of Z,
since each element must be calculated per iteration.

Although SSC has some desirable properties such as correct
subspace identification guarantee [14], and flexibility in modelling
which inspired many methods like [1,3,15], huge memory and
computational costs prevent it and its later variants from being ap-
plied to even modestly sized datasets. In light of this important is-
sue, there has been considerable interests in developing tractable
subspace clustering algorithms. We elaborate the latest develop-
ments in the next section and propose our solution.

2. Related work on efficient solutions

To alleviate the computational complexity of an algorithm, one
proliferate direction is to approximate existing methods at the cost
of minimum accuracy loss. In subspace clustering domain, approx-
imation methods can be divided into two classes: inductive and
heuristic. Inductive methods perform some subspace clustering al-
gorithm or learn the similarity matrix on a small subset of the
data. The full structure of the similarity matrix or labels is then
obtained by inductive transfer from the subset. Heuristic methods
directly assign cluster labels by greedy selection of nearest neigh-
bours based on a defined metric.

Scalable SSC (SSSC) [16] was probably the first attempt to re-
solve computational issues. As an inductive method, it first se-
lects some candidate samples from the data and performs SSC on
these samples. Then the remaining samples are assigned to clus-
ters based on their fit into the clusters formed by the training can-
didates. This approach has considerable issues. First, the candidate
samples are selected by uniform random sampling. This does not
guarantee that every cluster will be accounted for in the candidate
set. Second, there must be enough candidate samples for the can-
didate clusters to generalise to the remaining samples. Correctly
choosing the number of samples is a difficult task.

Arguably the most prominent heuristic method is Orthogonal
Matching Pursuit (OMP), which has been long used as a greedy
sparse approximation method [17]. For each data point, a resid-
ual vector is set as the data point. Then the nearest neighbour to
the residual is found and then the residual is updated by a pro-
jection of the data point onto the span formed by the currently
picked up neighbours. This is repeated until the number of neigh-
bours is reached or the norm of the residual is small enough. OMP
is also known by other names such as Greedy Feature Selection
(GFS) [18] and is a constant well that researches draw from [19].

Although OMP is advertised as a fast approximate method how-
ever in practice we do not find this to be the case. First, the near-
est neighbour search is performed for every iteration. Second, the
computational and memory requirements of a naive implementa-
tion tend to increase dramatically as D increases due to the need
to create a D x D matrix in each iteration for every data point.
This, in some cases, makes it just as intractable as SSC. Third, the
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naive implementation requires successive computation of the SVD
of the span matrix at each iteration. The second and third points
have fortunately been mitigated by improvements such as Rank-1
updating scheme of Moore-Penrose Inverse [20], factorisation ap-
proaches such as QR and Cholesky decomposition [21] or more es-
oteric methods [17,22,23]. However the speed gain from OMP algo-
rithm is shadowed by its performance. As shown in Section 5 we
find that GFS (OMP) performs poorly in terms of clustering accu-
racy.

OMP has inspired other methods such as Greedy Subspace Clus-
tering (GSC) [24] and ORGEN [25]. GSC differs from OMP in neigh-
bour selection. Each neighbour is selected by finding the data point
which has the largest norm of projection onto the span formed by
the current neighbours. Although at first glance GSC appears to be
simple and thus likely to scale well w.r.t. N, the projection step
is quite computationally intensive and just like OMP the nearest
neighbour search is performed in each iteration.

ORGEN extends the SSC model to the Elastic-Net model. That
is, it uses the ¢, norm in tandem with the ¢; norm. From an ini-
tialisation point of some neighbours of each x; it solves the Elastic-
Net objective then determines an “oracle point”, which is the resid-
ual from fitting the coefficients from the Elastic-Net procedure to
the model. This oracle point is then used to find potential new
neighbours. The procedure terminates when no new neighbours
are added at the end of an iteration. ORGEN suffers from a number
of problems. First it is highly initialisation dependant. The authors
suggest performing ¢, sub problem and choosing the largest valued
elements as the initialisation pool for each x;. This can be slow as
when D is large and the ¢, problem lacks rigorous guarantees of
successful subspace identification. Second the repeated computa-
tion of elastic net is problematic when the active set grows large.
This is a very real concern as termination only occurs when the ac-
tive set stops growing. The active set could grow to the full size of
the data set. Third the claim of improved running time is not evi-
dent. The authors show running times for single x; instead of the
whole data X and do not compare to different approaches such as
[16] or [26].

Heuristic methods are often incredibly simple. For example Ro-
bust Subspace Clustering via Thresholding (TSC) [26] essentially
performs nearest neighbour based spectral clustering. For each
point the nearest neighbours are found and the affinity matrix is
constructed using exponential inner product between each of the
neighbours. However, the subspace identification accuracy is prob-
lematic.

3. Efficient sparse subspace clustering

There is still much room to improve, because there are prob-
lems of existing methods, compromising either efficiency or accu-
racy. Our contribution to efficient subspace clustering is inspired
by the sparsity of SSC. It has been shown repeatedly that each data
point can be reconstructed by only d; (the dimensionality of the
underlying subspace) other data points from its corresponding sub-
space [12,14,27]. This is the basis of SSC’s operation. By finding the
sparsest representation one will be left with the minimum sup-
port to represent a data point x;, corresponding to data points in
the same subspace. Therefore it is clear that blindly considering all
other points as candidates for reconstruction is very wasteful since
only a relative few points will be left as support. Furthermore the
process is very intensive in terms of memory requirements. The
most efficient algorithm for solving SSC requires O(Nz) FLOPs per
iteration and the storage of O(Nz) over the algorithm'’s entire op-
eration w.r.t. Z.

Therefore if we can safely prune a vast majority of data points
as candidates when reconstruct one data point, then we can mas-
sively reduce computational and memory load. In other words this
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Fig. 1. Left: Singular values of several faces (different colours) from the Extended Yale B dataset. Right: Average percentage of true positive and false positive nearest neigh-
bour selection from the entire Extended Yale B dataset and correspondingly, in green, a plot of when the sufficient true positives are reached on average. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Left: Singular values of several motions from the Hopkins 155 Motion Dataset. Right: Average percentage of true positive and false positive nearest neighbour selection
from the checkerboard and traffic sequences in the Hopkins 155 Motion Dataset dataset and correspondingly, in green, a plot of when the sufficient true positives are reached
on average. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

means that for any column of Z, say z;, we would only solve for
a small subset of the entries of z; while the other entries are
left zero. To this end we propose kSSC, in which we limit each
data point to be represented by at most k other data points se-
lected simply by kNN (k-Nearest Neighbours) with normalised in-
ner product. Thus the relaxed objective function for kSSC is*

> xz;5I7

je

. 1Y
TT;}H)»HZz‘Hl +jZ||Xi— (4)
1

where ; is the set of data points to use for reconstruction of data
point i. Under this objective we can reduce both the memory and
FLOP requirements to O(kN) w.r.t. z;, which when k < N provides
massive savings.

Evidently the success of kSSC relies heavily upon both the size
of k and the scheme that is used to select ;. First one should
always choose k > d; since each data point needs at a minimum
d; other points for reconstruction. Fig. 1 shows singular values for
multiple subspaces (a single subspace corresponds to a single sub-
ject or face) from the Extended Yale B dataset. The point at which
the singular values begin to trail off reveals the underlying sub-

space dimension d;, which in this case is 9 [12]. Therefore in that
case we should set k > 9. Similarly in Fig. 2 we perform the same
analysis on the motion segmentation dataset and find that the sub-
space dimension is 4. Since in almost all cases d; « N and thus
k < N, the computational and memory requirements of kSSC will
be much lower than SSC. However even in cases where there is
no prior information about d;’s, one can set a large, conservative
value for k with little impact on overall performance when k <« N,
for example let k = D.

Moreover, one must choose €2; such that it contains the “right”
data points from Xx;'s subspace. Uniformly random sampling k
points is a poor choice since the selected ones may not belong to
the same subspace. Recent works such as [18,24,27] have demon-
strated that even in noisey cases or cases of subspace intersection
that the points closest to each x; in the ambient space usually cor-
respond to the most strongly connected data points in Z, i.e. data
points from the same subspace. We come to the same conclusions
and most importantly, we provide the conditions and probability
bounds of the effectiveness of selecting points from the subspace
using k nearest neighbours. We present our two central theorems
here. First in the case of noise free data:
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Theorem 1. Given the conditions

miny s =2
24/(dyAdy) (tlog Ny+t2) R

ber of subspaces, then the points selected for any sample y from
subspace S; by using kNN with k = kg contains no samples from
other subspaces but S; with probability at least 1 — (L—1)et —
exp (—kg(n—Inn+1) — (n-1)).

in Corollary 9, if A,q1 <

L, where L is the total num-

Second in the case of noisey data with the assumption that the
noise is Gaussian with zero mean and variance o2:

Theorem 2. Given the conditions in Corollary 9 and the noise model

/dg (8-6€) }

(A.10), for a small positive €, if A, < ming {2 T rdo e |

then the samples selected for any sample y; from subspace
S1 by using kNN with k=ky contains no samples from other
subspaces but S; with probability at least 1— (L—1)e™t —
exp (—kg(n—Inn+1) — (n—1)) —2Lexp(1 — ‘;f—zz) - LDGL;.

We leave the lengthy proofs, detailed conditions and symbols
definitions in the appendix in order not to obstruct the flow.
Theorem 1 says that for subspace clustering purpose we can sim-
ply set €2; for x; as its k nearest neighbours from the original am-
bient space when N is large. The neighbours are very likely coming
from the same subspace as the given one under some assumptions
listed in Theorem 1. However when X is subject to noise, the as-
sumptions are stronger with also lower probability for kNN to se-
lect neighbours from the same subspace. For this reason we rec-
ommend setting k well above d; to provide sufficient head room.
Furthermore we suggest increasing k as the magnitude of expected
noise increases, since as noise increases, so does the likelihood of
false positive neighbour selection as shown in Theorem 2. More-
over, these results suggest that a further subspace identification
procedure is absolutely necessary and hence gives rise to kSSC. In
Figs. 1 and 2, we demonstrate this effect on the Yale and Rigid
Motion datasets respectively. We note that the required value for k
to select sufficient true positives via kNN exceeds d;. This is due to
the presence of noise and corruptions in the data and the some-
times small distance between subspaces, particularly for the Ex-
tended Yale B dataset. Although still extremely small relative to N.

In summary we propose to eliminate the calculation of redun-
dant elements of Z by computing only k rather than N coefficients
for each x;. An overview of the entire method can be found in
Algorithm 1. Subspace identification accuracy can be exactly main-

Algorithm 1 KkSSC.

Require: XP*N - observed data, k - number of neighbours, L -
number of subspaces
1: for i — N in parallel do
2 Set ©2; by kNN
3:  Obtain coefficients z; by solving (2?)
4
5

: end for
: Form the similarity graph

W=1|Z|+|Z|"

(5)
6: Apply N-Cut to W to partition the data into L subspaces
7: return Subspaces {S;}t |

tained from SSC provided that the following conditions are met:
(a) k is equal to or greater than max(d;), and (b) the elements of
€; are nearest neighbours of x;. These conditions are sufficient but
not necessary. In some cases clustering accuracy could be main-
tained when k is less than max(d;) or different filtering method is
used. However when these conditions are met kSSC ensures that
SSC’s guarantee of correct subspace identification and robustness
to noise is preserved since kNN is guaranteed to correctly identify
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neighbours (see Appendix A). Furthermore kSSC is easily solved in
parallel as €2; and each column of Z is independent.

3.1. Optimisation

We use FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)
[28,29] to solve (4). FISTA is an accelerated gradient descent
scheme for solving objective functions containing a smooth part
and non-smooth part as is the case with (4). One of the key abil-
ities of FISTA is that it guarantees a convergence rate of O(%)
where t is the iteration counter. This is achieved by dynamically
setting the rate of descent parameter (Lipschitz constant) and us-
ing the two previous iteration points to accelerate the gradient de-
scent. Furthermore FISTA provides the aforementioned ability with
minimal computational and memory overhead. Each iteration of
FISTA only requires solving a closed form proximity problem which
in the case of ¢; minimisation can be solved at an element wise
level. This allows us to resolve the selective fitting term of (4) since
we can enforce it by ignoring the elements of Z that are outside of
Q.

We begin by re-writing, with some abuse of notation, the orig-
inal objective (4) for a single column of Z
mink = Azl + 5 1% — Xzl (1)
where z; = zg; the vector of elements indexed in €; and X; =
X(.q, the matrix formed from the columns of X mdexed by ;.
Note that we have removed the constraint diag(Z) = 0 since we
enforce it by ensuring that no diagonal entries are present in each
Q.

At each iteration in the FISTA scheme one must solve the ¢4
proximal linearised form of L. Denote the linearisation of L at point
2

(2)

where F = }||x; — X;z;||3 and correspondingly dF = —XI (x; — X;z}).
The solution to (2) is given by the closed-form ¢; shrinkage func-
tion S; as follows

. 1 1 A
S% (z}) = 51gn(zit — EBF(Z})) max (lzit - EBF(Z,F)| s 0).
3)

We refer readers to [30,31] for further details. The full algorithm is
outlined in Algorithm 2.

1
minL, . 2)) = Azl + 51z - @—;wmﬁi

Algorithm 2 Solving (4) via FISTA.
Require: 1, =00,2;=0,j;=0,a;=1, A, p;, ¥, €
while rf — 71 > € do
while L(S% (4;)) = Zp (S% (4;).Jt) do

Pi =Y Pi
end while
t+1 S (Jt))

1+ [1+4at?)
t+1 _ i
o =

. t1
_]F“ _ Z}CH + (z}” )(Zitﬂ _ le)
t+] L(S (Jt))
end while

3.2. Segmentation

After solving (4) for each z; the next step is to form Z and use
the information encoded in Z to assign each data point to a sub-
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Fig. 3. Left: A comparison of running times with increasing N between kSSC, SSC and their various implementations. Right: A zoomed comparison of running times with
increasing N for kSSC relaxed and exact variants (taken from the Left plot). Note that the scales are different since kSSC takes a fraction of the running time of SSC.

space. A robust approach is to use spectral clustering. The matrix
Z can be interpreted as the affinity or distance matrix of an undi-
rected graph. Element Z;; corresponds to the edge weight or affin-
ity between vertices (data points) i and j. Then we use the spec-
tral clustering technique, Normalised Cuts (N-Cut) [13] in particu-
lar as in SSC, to obtain final segmentation. Since we expect Z to
be sparse in most cases N-Cut should have reasonable computa-
tion time, particularly in comparison to a full Z matrix. However
in cases where N-Cut is too slow one can use approximate tech-
niques such as the Nystrom method [32].

Spectral segmentation techniques such as N-Cut require the
number of subspaces p as a parameter. In the case where the num-
ber of subspaces is unknown one can use either the Eigen-gap
[14,33,34] or the closely related SVD-gap heuristic of Liu et al. [35].
The Eigen-gap heuristic uses the eigenvalues of Z, see Eq. (5), to
find the number of subspaces. It does this by finding the largest
gap between the ordered eigenvalues, the number of eigenvalues
before this point is treated as the number of clusters. Let {8i}$’=1
be the descending sorted eigenvalues of Z such that §; >, > ... >
Sy. Then L can be estimated by
L = argmax (6; — 8;;1)

i=1,..,N—1
The SVD-gap heuristic is the same procedure with eigenvalues of
Z replaced with singular values. Further improvements upon the
Eigen-gap heuristic have been made, see [33] for details.

3.3. Complexity analysis

The complexity of kSSC only varies from SSC w.r.t. Z as can be
seen from Algorithm 1 and a comparison of Algorithm 2. It differs
in two ways. First we must find the k nearest neighbours of each
X;. Fortunately fast approximate methods exist for computing kNN
and are freely available in packages such as FLANN [36]. The com-
putation time for kNN is on the order of O(NlogN) and O(logN)
for preprocessing and searching respectively [36-39].

Second is the updating of z; at each iteration. Since we are only
updating k entries of each column of Z instead of the full N en-
tries the FLOP count is drastically reduced. Similarly the amount
of memory required for updating Z is drastically reduced. They are
both reduced from O(N?) to O(N). We call the solver for (2) the
relaxed variant and the solver for (3) the exact variant. Note that
the relaxed variant has markedly lower FLOP counts than the ex-
act variants. This assumes one execution of the ¢; shrinkage op-

erator per iteration. However in the case of FISTA, a single itera-
tion may require many executions of the shrinkage operator due to
the search scheme for optimal rate of descent parameter. In prac-
tice we find that solving the relaxed variant by FISTA is usually
faster since choosing p is not a difficult task and can be estimated
by running the solver on a small sub section of the data. Further-
more the FISTA based solver will converge much faster than other
solvers. We provide a brief sample of running time differences in
Fig. 3 to illustrate the difference between implementation variants.
We also demonstrate the effect of varying the number of available
cores for the parallel implementations in Fig. 4. We find that in
the case of SSC as the number of cores increase the computation
time also increases, which indicates that the performance of SSC is
not as straight forward. In fact the performance is markedly worse
than expected due to the overhead of sharing and multiple access-
ing of the full data matrix X, which further reinforces the point
that SSC does not scale well with large datasets with naive paral-
lelisation. On the other hand, kSSC benefits greatly from increasing
the core count and eventually plateaus due to it’s own overhead.

4. Synthetic evaluation

In this section we use synthetic data to experimentally evaluate
our hypothesis proposed in Section 3 and the therotetical analysis
in Appendix A that kSSC can match the clustering accuracy of SSC.

In an effort to maximise transparency and repeatability, all
MATLAB code and data used for these experiments and those in
Section 5 can be found online at https://github.com/sjtrny/kSSC. To
help evaluate consistency parameters except for k were fixed for
each experiment, which we further explain in the following sub-
sections and are recorded in the code repository.

4.1. Metrics

Segmentation accuracy was measured using the subspace clus-
tering error (SCE) metric [12], which is defined as
num. of misclassified points
total num. of points

SCE = x 100, (4)

where lower subspace clustering error means greater clustering ac-
curacy. In cases where we inject extra noise we report the level of
noise using Peak Signal-to-Noise Ratio (PSNR) defined as

SZ
PSNR = 101log ( ) (5)
O DY (X — A2
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where X=A+N, A is the original data, N is noise and s is the
maximum possible value of an element of A. Decreasing values of
PSNR indicate increasing amounts of noise.

4.2. Effect of subspace dimension, cluster size and ambient dimension

As noted in other works such as [26,40] the ratio of the sub-
space dimension d; to the number of points in each cluster N; can
play a dramatic role in the clustering accuracy of SSC. However
these works also ignore the role of ambient dimension D. In this
section we demonstrate the relationship between all three vari-
ables.

We generate 5 subspaces and vary their dimension d; from 3 to
30 and N; from 15 to 150. Each subspace is created using random
orthonormal vectors as the basis with uniform random coefficients.
For each pair of d; and N; we take the mean of the SCE over 50
trials. We repeat this again for 3 instances with D set to 30,50
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and 100. For this experiment we set k = % or k = 1.5D, whichever
is smaller. The results shown in Fig. 5 that kSSC can match the

performance of SSC even when k « d;.
4.3. Effect of mean, variance and noise in subspace distribution

Note that the coefficients chosen are uniform random in syn-
thetic data experiments in the prior subsection. This strategy is
also adopted by several other works in this field. However data en-
countered in the real world may be normally distributed in their
respective subspace. Furthermore the data points are often cor-
rupted with noise, which we assume will be A(0, 1).

For this consideration, in this experiment we vary the mean
and variance o2 of Gaussian distributed data points using random
orthonormal vectors as the basis for each subspace. We create 5
subspaces with d; =5, N; = 50 and D = 50. For each pair of u and
02 we take the mean SCE over 50 trials. We repeat this again for
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Fig. 5. Effect of subspace dimension, cluster size and ambient dimension.
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Fig. 6. Effect of mean, variance and noise in subspace distribution.

3 instances, each time increasing the noise factor, which we report
using PSNR. For this experiment we set k = 10. The results shown
in Fig. 6 that kSSC can match the performance of SSC. We note
that the effect of mean and variance on point distribution in the
subspaces is significantly more pronounced as PSNR decreases.

4.4. Effect of subspace intersection

The intersection of subspaces (shared basis vectors) plays an
important role in the clustering accuracy. As previously reported
by others, the clustering accuracy decreases as the dimension of
intersection increases. To demonstrate this effect and that kSSC
can match SSC, we perform the same experiment as found in Sec-
tion 8.1.1 of [26] and Section 5.1.2 of [40]. We generate two sub-
spaces with D =200, d; = 10 and N; = 20d; and vary the number
of shared basis vectors b from 0 to d;. We generate U € RP*2di=b
random orthonormal basis vectors and set the basis vectors for S;
to the first d; columns of U and correspondingly the basis for S,
to the last d; columns. We then take the average SCE over 20 trials
for each b. Results are reported in Fig. 7, where we can clearly see
that kSSC closely matches the performance of SSC.

5. Experimental evaluation

In this section, we evaluate the clustering performance of kSSC
on semi-synthetic and real world datasets. We vary the amount
of additional noise in some of these experiments to compare the
robustness of kSSC against the pre-existing competitor algorithms
Greedy Feature Selection (GFS), Greedy Subspace Clustering (GSC),
Scalable Sparse Subspace Clustering (SSSC) and Robust Subspace
Clustering via Thresholding (TSC). Additionally we use SSC to gauge
baseline performance.

The running times of the experiments carried out in
Sections 5.1 and 5.3 can be found in Fig. 8. Since these experiments
are small in size the running time reduction of kSSC is not that sig-
nificant. However these tests indicate that kSSC matches the clus-
tering accuracy of SSC very closely, an attribute that is not found
in other methods. We perform a test in Section 5.2 to evaluate the
running time of kSSC for a large scale data set.
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Fig. 7. Effect of subspace intersection.

5.1. Thermal infrared data segmentation

We assemble synthetic data from a library of thermal infrared
(TIR) hyper spectral mineral data. The library consists of 120 pure
materials spectra samples with D = 321. We generate 5 subspaces
with d; = 5. For each subspace we randomly select 5 spectra in
the TIR library and generate 50 points using uniform random non-
negative coefficients. We then corrupt the data with various levels
of standard Gaussian noise and evaluate clustering performance of
our kSSC and other contenders. The experiment is repeated for 50
trials for each level of noise to obtain an average SCE. Results can
be found in Fig. 9. kSSC closely tracks the performance of SSC and
outperforms all other methods.

5.2. Large scale thermal infrared segmentation

The main goal of kSSC is to maintain SSC’s clustering accuracy
but in a fraction of the time. To confirm this ability, we create a
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of each tested algorithm for the Motion Segmentation experiment found in Section 5.3. Overall in these experiments the benefit of kSSC is slight in comparison to other
methods since N is low. We refer to readers Section 5.2 for a comparison in running time where N is large.
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Fig. 10. Running time of large scale experiment. The size of the largest tested data
set is 20,000.

large scale semi-synthetic dataset from the TIR data used in the
previous subsection. We generate data in a similar fashion to the
previous section. However for each subspace we generate N; points
using uniform random coefficients where we vary N; from 100 to
4000. Therefore the size of the largest tested data set is 20,000.
For this experiment, SSC, GFS and GSC stop early since they do not

scale well in this application (see Section 2). From Fig. 10 we find
that kSSC has similar run time characteristics to TSC and SSSC.

5.3. Hopkins 155 motion segmentation

The aim of this experiment is to assign feature points extracted
from a video to their corresponding motion or object in the scene.
As previously mentioned, it has been shown in Elhamifar and Vi-
dal [12] that these features trajectories actually correspond to low-
dimensional subspaces. The data from this experiment is drawn
from the rigid motion sequences of the Hopkins 155 dataset [41].
These sequences have around 200-500 feature trajectories and
range in number of frames from 20 to 60. Results can be found
in Fig. 11. Again kSSC closely tracks the performance of SSC and
consistently performs as the PSNR decreases.

5.4. Extended Yale B face clustering

The aim of this experiment is to cluster unique human subjects
from a set of face images. We draw our data from the Exteded
Yale Face Database B [42]. The dataset consists of approximately
64 photos of 38 subjects under varying illumination. We select
three subjects randomly then resample their images to 96 x 84 and
form data vectors x; € R2016 by concatenating them together. This
test was repeated 50 times with new random subjects each time.
This is a challenging dataset since the original data is already cor-
rupted by shadows from the varied illumination. Results can be
found in Table 1. Surprisingly we find that kSSC even outperforms
SSC for this task, which may be due to the aggressive kNN pre-
screening process removing all but the most similar data points. In
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Table 1

Face clustering results from the extended Yale B dataset.

Mean Median  Min Max Std Mean run time (s)
SSC 28.1%  31.5% 0.0% 65.6% 24.5% 2138
GSC 30.6%  29.9% 0.5% 55.2% 15.6%  30.38
TSC 58.1%  61.2% 36.5%  66.1% 7.3% 7.59
SSSC  59.5%  58.6% 31.8% 100.0% 17.2%  0.66
kSSC  22.3% 17.2% 0.0% 65.1% 19.3%  30.38

this dataset, there are many face images of different subjects that
contain large regions of highly similar data due to the extreme oc-
clusions from shadows. We believe the nearest neighbour filtering
selection helps to prevent the possibility of extreme false positives
connections in Z. Note that in this case, kSSC is slower than SSC.
This is caused by the overhead of kSSC pre-screening process using
KNN. There is no computation saving when k and N are close.

6. Conclusion

In this paper we proposed a new algorithm, kSSC, to accurately
and tractably approximate SSC for large scale datasets. By accu-
rately screening out the vast majority of eligible data points as
neighbours the memory and computational requirements are re-
duced from O(N?) to O(N). Our theoretical analysis justifies the
KNN screening process, which is able to find true neighbours from
the same subspace with high probability. Moreover our empirical
results on synthetic and real data demonstrate that kSSC outper-
forms the existing SSC approximation methods in terms of accu-
racy and matches or beats the computational and memory require-
ments.
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Appendix A. Analysis of subspace discovery by kNN

We need a concentration of measure lower bound on sphere to
start with.

Theorem 3. Let j1(Ag) be the uniform probability measure on sphere

§4-1 embedded in RY and As is a cap centered around a point

x on S%-1, defined as As = {x"y > 8|y € %! and § € [0, 1]}. Then
_8)d-1

1(Ag) = TGP

Proof. We start with defining A, = {d(x,y) <r|lyeS¢ ! and § €

[0, 1]}, where d(x,y) is the geodesic metric on sphere. Write S;_;
the volume of S¢-1. Then w(A;) = ﬁ fo sin?2 (x)dx as in Beresty-
cki [43]. Assume r is small, i.e. r € [0, Z]. Observe that sin(x) > %x
when x € [0, % ]. Therefore,

1 L) d-2 1 (;)dfzrdfl

A) > —— <fx> dx = —— 7~
non = (3 Sei d-1
We then bound S;_; from above. S;_; = f3 sin?~2 (x)dx. Taking one
sin(x) out and integrating by parts leads to S;_; = %Sd,3 and ap-
parently S;_; > S;_3. Use the inequality recursively and note that
S3=7% and S, =2, we have S;_; <2, which leads to

(%)d—Zrd—l
W(Ar) = “od—2

Convert the metric to inner product as the following using r =

(2)d-23c0s4-1(8) T
acos(8). n(As) > -=——-————. Note that for r€[0,%Z] and § ¢
[0,1], acos(8) > Z (1 —§), therefore,

w(1=38)d-1
/’L(A(S) = W
O

The above lower bound of measure for sphere cap can be used
as the lower bound of the probability of points falling into A; when
the points are uniformly distributed on $4-1, i.e.

w(1—3§)d-1
4(d-1)

Although it does not seem to be a large probability, when the

number of points grows large, the number of samples falling into

the same patch As becomes large, as shown in the following
lemma.

P(y € As) = = Po. (A1)

Lemma 4. Let y be the random variable uniform distributed on

sphere S%-1 embedded in RY and Az is a cap centered around a point
x on S9-1, when N > %, the probability of ko points falling
into Ag is lower bounded, i.e.

ki
o (N
P(K>ko)=1-)" (k>p’6(1 - po)" 7,

k=0

(A2)
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where N is the total number of points.

Proof. First, it is easy to check that f(x) =x*(1 — x)N-* is mono-
tonically decreasing when £<x< 1. Using probability bound
in (A1), we obtain that P(K=k) < (N)p’é(l—po)N*k. Connect
(A.1) with monotonicity requirement, we have pg > ’i and the
condition for the number of points as stated in the theorem ie.
4kg(d—1
N> W Using P(K > ko) =1 — Zko P(K = k), we complete
the proof. O

The probability seems complicated. Enlightened by the asym-
totic approximation of Poisson to Binomial, we seek a proper A for
Poisson that is larger than Binomial with N and py. To this end, we
first have the following lemma.

Lemma 5. Given Binom(N,p) the binomial distribution
with N trials and p>0 success probability. When p>
1
k- 3 2
|:22 ln(NNl)kkln(N ko)j| _ i
k
(ll\cl)p"(l pvH < eiop (20D (A3)
k

for a given k such that k < kg.

Proof. The RH.S of Eq. (A.3) is P(K =k) under Poisson distri-
bution Pois(A) where A = (N —kg)p. We first observe that both
sides of the inequality are non-negative so we can consider nat-
ural logarithm transform, i.e. In(-). Note that In(1 —x) =Y 2 - %
and tl}erefore, when x > 0, we have In(1 —x) < —x and In(1 — x) 5
—x— 1x2,

Wﬁen k=0, the In of LHS of (A3) is NIn(1—-p) <—-Np<
—(N = kg)p which is the In of the RH.S of (A.3). So (A.3) holds
when p > 0. When k > 0, we have

In [(Z) ph(1 - p)”"‘]

k-1

= Zln(N —1)+ (N—=k)In(1 - p) —In(k!) + kIn(p)
i=0
k—

<Zln(N 1)—(N—k)(p+ p)—ln(k!)+l<1n(p)

(A4)

k—
<Zln(N 1)—7(N k)p?> — (N — ko)p — In(k!) + kIn(p)
i=0

< kIn(N — ko) — (N —ko)p — In(k!) + kIn(p)

where in the second line we use In(1 —x) < —x — %xz when x > 0
by series expansion of In(1 — x) at x = 0, and in the fourth line we
apply the condition in the lemma to p® only. Note that the end of
the above inequality is exactly the In of the R.H.S of Eq. (A.3). O

This lemma says that P(Binom(N, p) = k) < P(Pois((N — kg)p) =
k) when the conditions are satisfied in the Lemma especially the
lower bound of p. However, the lower bound of p varies along k.
Fortunately it is easy to find a unified lower bound as stated in the
following corollary.

1

Corollary 6. When  p> f(kg) = 22‘ 0 ln(NNl) koko InWV=ko) =
P(Binom(N, p) = k) < P(Pois((N — kg)p) = k) for any k such that
0 <k < k.
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Proof. Following from Lemma 5, p z’ r{lga)}{ }f(k) will satisfy all k
ke{0,...kg
that are no larger than k. Also

_N_
fQ) = \/Zlij(”‘]"“) s\/zli](”z" )
_ \/ (In (%) +n (451))
- N-2

By induction, we can easily show that f(k) is non-decreasing along
k. As such,

ke?(}f?fm}f (k) = f(ko)

O

= f(2).

Corollary 6 shows that when the success probability p in bi-
nomial distribution Binom(N, p) is not less than f(kg), binomial
distribution can be upper bounded by Poisson distribution with

= (N — ko) p. Therefore, the lower bound in (A.2) in Lemma 4 can
be replaced by the probabilities from Poisson distribution. How-
ever we need to balance the values of N and pg. The the following
lemma is for this purpose.

Lemma 7. Let y be the random variable uniform distributed on
sphere S4=1 embedded in R? and Ay is a cap centered around a point

x on S9!, when pgy > NOTJ) and N > kg, the probability of k; and
ky < ko points falling into Ag is lower bounded, i.e.

P(K > ki) > 1 — P(Pois((N — ko) po) < k1) (A.5)
Proof. First  notice  that Y ¥ In(N—i) —kIn(N ko) =

Zf';o ln(NNjo), and In(1+x) <x when x>0 using series ex-
pansion. Therefore,

Y 1lr1(N— i) — ko In(N — ko)
flk1) = f(ko) = [2 " (A.6)
2 k ko—i
leo N*ko k() (kg + 1) ko +1
N — ko (N - ko)z - N ko
So when py > &°~, the conditions in Lemma 6 are satisfied. Ap-
parently, kOJ;{] > ’,‘3 which enable us to combine Lemma 4 to give

the followmg
kq

P(K > k) = 1= " P(Pois((N — ko) po) = k).
k=0

which is the required result in this lemma. O

Lemma 7 shows that when the number of data points N is
large, the probability of at least k; points fall into a small patch
is lower bounded if pg > k— There is a lower bound for N as
well written as Ny. When N > NO, this probability lower bound can
be large. We have the following theorem for this.

Theorem 8. Assume the same settings and conditions in Lemma 7.

_k +1
Let No = <= +ko = AT
ki < ko, lfN =n(Ng — kg), then
(A7)

Proof. It is easy to see that when N > N,, the conditions in
Lemma 7 are satisfied. Then (A.5) holds and A = (N —ky)pg =
n(kg + 1) in Poisson distribution according to the choice of Ny and

Tl(ko + 1)

P(K>k1)zl—exp< n(k0+1)+k< X
<1
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n. Applying Chernoff bound to the Poisson distribution completes
the proof. O

Let k; = kg, we have the following corollary immediately.

Corollary 9. Follow the same settings and conditions in Theorem 8.

_ ko1 _ 4d-1)(kg+1) N, : _
Let Ng = %O +ko = W-ﬁ-ko,foranynz W—‘Jko >1,if N=
n(Ng — kg), then

P(K > ko) >1—exp(—ko(n—Inn+1) - (n—1))

Proof. This is just result of replacing k; by ko in Theorem 8 and
the application of In(1 +x) <x. O

Remark. kg is the upper bound for the number of nearest neigh-
bours to be considered, which is used to construct the Poisson ap-
proximator. Apparently, kg is connected to Ny, the baseline number
of data points required to have large probability. k; is the actual
number of nearest neighbours in KNN searching. In real applica-
tions, one should have k; = ky. See Corollary 9. Theorem 8 gives
the values of all these variables and associated probabilities. The
probability is ultimately determined by §, d and n. Larger proba-
bility requires large N, and it grows exponentially with dimension
d.

Next we bound the inner product between samples from dif-
ferent subspaces. Here we use the arguments in Lemma 7.5 in
Soltanolkotabi et al. [40].

Lemma 10. Let A € RN be a matrix with columns uniformly dis-
tributed in Sh—1, y e R% be a vector uniformly sampled from S%1
and a deterministic matrix ¥ € RG>, For t > 0 € R, the inner prod-
uct between any column in A and Xy is bounded as follows

aT):y _ 2,/tlogN; + t2|| X||¢
i = \/(71

with probability at least 1 — et

Proof. Using Borell’s inequality on the mapping y + || Xy| with
Lipschitz constant of oy, the largest singular value of X leads to

P(IZyll > & + VE[Zyl[?) < e~2°/1.

As E||Xy||? = || X||3/d,, we choose & = (b—1)||Z||f/,/d; so that

p(zyl > AEEy _o-to-rre,
2

(A.8)

where we used the fact that || X||f/0q7 > 1.

The next step is to bound the inner product of a column in
A ie. a; i=1...N;, with any vector x € R%1 by upper bound of
spherical caps

P@'x > g||x|)) < e 2% Vi
which leads to the following using the union bound

P\ Ja/x > eIx|)) < Nye~z4e?,

1

_ /2logNy+2t _ e .
Let ¢ = /7011 , b= /2d,t. Substituting (A.8) to (A.9) gives

2 /tlogN; +t2|| X
P(Ual‘rzy> Og 1 + ” ”F) fe_t.
i Vi
Therefore
2 /tlogN; +t2|| X
Py zy < V/tlog Ny + 2| ||F)Zl
i Vi

which concludes the proof. O

(A.9)

_ e—f’
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The above gives the upper bound of the inner product, which
connects to samples in subspaces with the following corollary.

Corollary 11. Let X € R™M be a matrix with columns formed by
sampling uniformly from subspace S; with dimensionality d; and
y € R? uniformly drawn from subspace S, with dimensionality d,. The
inner product between any column in X and y is bounded as the fol-
lowing

X7y < 241 2y/min{d;, d,}(tlog Ny + t2)

i \/a

with probability at least 1 — e~ for t given previously.

Proof. This is the simple application of 10 with ¥ = U]U, where
U; (j =1,2) is the orthonormal basis for subspace S; and A;  is
the affinity between subspaces S; and S, described in Definition
1.2 in Soltanolkotabi et al. [14], which we recall here:

A cos2 M 4 ... 4 cos? 9 ird))
W d,’ /\dj

where {cos20 @, ..., cos? 0@ 9} are the principal angles between
subspaces S; and S;, and d; A d; stands for min{d;.d;}. So || Z||F =

U UsllF = Aq 2/di Ady. O

Without loss of generality, we consider a sample x; from sub-
space S;. The following theorem ensures that kNN will find k near-
est neighbors of x; from S; only.

Now we are ready to prove Theorem 1 the following.

Proof. This is a straightforward application of Lemma 9 and
Corollary 11 and the following. If

d,S
A1 < mein { \/7 }

2/(dy Ady)(tlogN, +t2)
then
Apr < @8
"7 2y/(dy Ady)(tlogN, +t2)
and
. 24, 1y/min{d;, d;} (¢ log N, + 2)

X
y \/a

Using union bound, we obtain the required probability. O

58, VXES@.

The above discussion deals with clean data only. In the follow-
ing we show that the results are similar for noisey data as long as
the noise level is not too great. We begin with the following series
of lemmas with the noise assumed to be Gaussian.

Lemma 12. Let random variables X and Y in R? both be from Gaus-
sian distribution N'(0, o21). For any given positive €, we have

4
P(XTY| > €) < deiz.

Proof. First we assume X and Y are standard Gaussian, we have
Ty)2

- EX'Y)

=—a

where the inequality is by Chernoff bound. Since both X and Y are

both standard Gaussian, they are isotropic, so we have

EXTY)? =d.

P(XTY| > €) =P((XTY)? > €?)

The above can be obtained by

E(XTY)? = Ex{Exy X"y)*} = Ev(IyI*) = d,
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where the first equality comes from law of iterative expectation,

the second from isotropic property and the last from the fact that

sum of standard Gaussian is Chi-square with d degrees of freedom.
After proper rescaling, we obtain the result in the lemma. O

Lemma 13. Let X € RY be Gaussian random variable from N (0, o-2I)
and y € RY be a fixed vector. The following holds with any positive €

ce?
o?llyll3 )0

where c is a constant related to sub-Gaussian norm [44] of a standard
Gaussian.

p(IXTy| > €) <exp (1

This is a straightforward application of sub-Gaussian tail to X Ty
with rescaling. By applying linear transformation to multivariate
Gaussian distribution, we can also obtain

p(XTy| > €) = 2¢<§),

where @ () is probability function of standard Gaussian. Now we
consider the inner product between two unitary vectors in sub-
spaces with noise. We use the following model

Y=X+E (A.10)

where Y is the observation, X is the clear signal in some subspace
and E is the noise assumed to be from A (0, o2I). We assume that
the observations have been rescaled properly such that X is from a
unit sphere in S~ and the variance of the noise is bounded.

First we note that under these conditions, the noise can in-
crease or decrease inner product between observed signals by only
a small amount, which is shown in the following lemma.

Lemma 14. Lety; (i = 1, 2) be observations from the model in (A.10),
such that y; =x;+e;, ||Xll2 =1 and e; ~AN(0,02I). If P(X{X; >
V) > p, we have

. ce? do?
P(y;y2>v—3€) > p—2exp <1 - 02> -
If P(x] %3 < V) > p, we have

ce? do#
P(y]y, <V+3€) >p—2exp (1 - 02) -

Proof. We prove the P(x]X; > v) > p case. The other cases can be
proved similarly. Writing yJy, in terms and using triangular in-
equality gives

ViV2 = X{Xo — X[ &3] — |e[x;| — |e[ey].
Then
P(y{y2 > v —3€) = P(X{X; > V[ |IX{ €] > €[] |e[x,]

>ef)|efey] > €
() le

2
szeXp(lf:z)

By using Lemmas 12 and 13, we obtain the desired result.

do*
€2’
O

Lemma 14 states that the noise will dispel the vectors when
they are very close and attract them when they are far away in
terms of the inner product induced distance. The effect of noise for
a given sample in subspace S; is then to make the samples from
other subspaces closer to it and more difficult to separate reflected
by the reduced probability as shown in Theorem 2. We proceed
with its proof as follows.

Proof. According to the model (A.10), y; = X; +e; and X; is on a
unit sphere. From Lemma 9, we know that there are at least kg
samples from S; in the patch Ag centred at x; with probability
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at least 1 —exp (=kg(n—Inn+1) — (n —1)). Combining this with
Lemma 14 leads to the following

P(mjivn{leyj} >8-3€)>=1-exp(—ko(n—Inn+1) - (n-1))
JeNy

ce?
—2exp (1 — 02)

where N C & is the set of ko samples around y; in As patch.
Using Corollary 11 and Lemma 14 results in that with probabil-

ity at least 1 —e~t — 2 exp(1 — f:—z - DEL;

v < 24,14/ (d1 A dy)(tlog Ny + £2) N

yivi = \/t?(

for any y; from subspace S;.
Similar to Theorem 1, combing the above two statements, if

. \/E(S — 6¢)
Agq1 < min
¢ 12y/(d nd,)(tlogN, +t2)

3e

then
Ty, = 2Auy/(di A do)(tlogN, +12)

yiyi= \/d7

with the probability stated in this theorem. O

+3€ <68 -3¢
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