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Abstract—Image mating is the process of isolating the fore-
ground in images and video. This task is challenging as it is
severely under constrained. At each pixel we must estimate the
foreground and background colour and the blending between
them (alpha value). Most approaches calculate an affinity matrix
and then minimise a system of linear equations to find the alpha
matte. In this work we propose an extension to this class of
affinity based matting techniques by introducing a Total Variation
constraint over the alpha matte. We show that our Total Variation
Regularisation method improves results in the presence of hard
boundaries, gaps and holes.

I. INTRODUCTION

Image matting is the process of extracting the foreground
component from an image. Separating a foreground object
is called “pulling a matte” or simply “matting”. This task is
typically performed in image and video editing and computer
vision and it has been studied extensively. Most commonly the
image capture process is conducted under controlled environ-
ments against a constant-coloured background known as “blue
or green screen matting”. This controlled capture environment
enables very fast and accurate algorithms to be used, provided
that the foreground component does not contain colours that
match the background. In this work we are concerned with
the problem of Natural Image Matting, meaning matting with
images that are captured in uncontrolled environments.

The complex nature of the problem has encouraged research
and the development of a wide array of techniques and
solutions. Most techniques rely on the compositing equation
[1]

Ii = αiFi + (1− αi)Bi (1)

where Ii, αi, Fi and Bi are the pixel value, alpha value,
foreground colour value and background colour value re-
spectively at pixel i. Porter and Duff introduced the alpha
channel to control the blending of foreground and background
in a compositing scenario. We call the α values over the
entire image the “alpha matte”. The alpha matte value lies
in the range between 0 (true background pixels) and 1 (true
foreground pixels).

It can be seen that this is a severely under constrained
problem, at each pixel the α, F and B are unknown. Per pixel
there are seven unknown variables that need to be solved from
three known (RGB) values. To alleviate this problem user input
techniques have been developed to provide extra information.

By labelling regions of the image as foreground or background
the computational load is reduced and the extra information
can be used to calculate the unknown regions more easily. The
two common input methods are the trimap and scribbles. A
trimap is an image of the same dimensions as the original that
defines known foreground (white), known background (black)
and unknown (grey) regions. Scribbles indicate the definitely
foreground and definitely background regions by white and
black scribbles over the image. The scribble method is a
response to the trimap method in that it attempts to reduce the
amount of user input required. A comparison of the trimap
and scribble inputs are shown in Figure 1.

In this paper we present an extension to the class of
affinity based matting methods by introducing a Total Variation
constraint over the alpha matte in an attempt to create an alpha
matte that is smoother, more accurately respects boundaries
and improves results in the presence of gaps and holes. We
perform our experiments with two representative methods:
Closed Form Matting proposed by Levin et al. [3] and Image
Matting via Local Tangent Space Alignment as proposed by
Gao [4].

The paper is organised as follows: Section II is a brief
survey of existing matting techniques. Section III formally in-
troduces Total Variation and a minimisation technique. Section
IV discusses the affinity based matting which we extend with
a Total Variation constraint. Section V details the foreground
and background reconstruction process. Section VI provides
analysis using a benchmark dataset and in Section VII we
make our conclusions.

II. RELATED WORK

Due to image matting being such an under constrained prob-
lem it has generated a lot of interest and potential solutions.
The website alphamatting.com [5] has been created for the
sole purpose of comparing techniques in a uniform manner
with a variety of image types. Most methods fall into two
categories: Colour sampling or Affinity matting. Colour sam-
pling techniques usually involve pixel by pixel methods such
as Bayesian matting [6], whereas affinity matting techniques
define an affinity or similarity matrix for the whole image and
use it as the basis for finding an alpha matte, e.g. [3].

Bayesian matting [6] is a colour sampling technique in
which alpha estimation is performed pixel by pixel. Two
sliding windows march inwards on the unknown region from
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Fig. 1: The matting process: (a) An image to perform matting on, (b) User supplied trimap where black indicates known
background, grey the unknown region and white the known foreground, (c) the Scribble alternative to a trimap with white for
known foreground and black for known background, and (d) a resulting alpha matte after matting is performed.

the foreground and background areas and progressively cal-
culate alpha values. Bayesian matting models foreground and
background colours as mixtures of Gaussians which can cause
it to be prone to failure in highly textured regions of an
image where the Gaussian model is insufficient to accurately
represent the colour distribution.

In Poisson matting [7], the authors formulated the problem
as one of solving Poisson equations with the matte gradient
field. Poisson matting relies on the assumption that that colour
changes are gradual or smooth in the foreground and back-
ground. There are two steps involved: firstly an approximate
gradient field of the matte is computed from the input image
and trimap, and secondly the matte is obtained from the
gradient field by solving Poisson equations.

Grady et al. proposed Random Walk matting [8] in which
the alpha value at a pixel is interpreted as the probability that a
random walker starting from said pixel will reach a foreground
pixel before a background pixel. Contrary to the title of the
paper the algorithm does not use a typical random walker
technique. Random walk matting merely constructs the graph
matrix (Laplacian) and then uses a system of linear equations
to find an alpha matte. The paper does introduce a novel
manifold learning technique to image matting called Locality
Preserving Projection (LPP) [9]. The original RGB values are
projected into LPP space upon which the Laplacian graph is
constructed. Using LPP is shown to be better at discriminating
boundaries than using raw RGB values.

Closed-Form matting [3] is an attempt to eliminate smooth-
ness assumptions and Gaussian modelling. Instead the assump-
tion is that within a small local window (usually 3× 3 pixels)
colours are approximately constant, this is referred to as the
colour line model. It is shown that under this model that it is
possible to analytically remove the foreground and background
from the alpha expression. The derived expression is then a
quadratic cost function for alpha which is solved as a sparse
linear system of equations.

Gao [4] formulated an affinity matting technique called Im-
age Matting via Local Tangent Space Alignment (LTSA). The
approach is similar to the Closed-form technique developed
by Levin et al.[3]. The difference lies in the formulation of
the affinity matrix, once the affinity matrix is created finding a
solution for the alpha is identical. Gao uses a manifold learning
based on latent variable models and a dimensionality reduction

technique called Local Tangent Space Alignment, which was
originally proposed by Zhang et al. [10], as the basis for the
affinity matrix.

Both works [3] and [4] are representative of machine
learning based image matting approaches, proposed in recent
years. Readers are referred to some similar works [11], [12],
[13], [14].

III. DENOISING WITH TOTAL VARIATION
REGULARISATION

Total Variation (TV) is a measurement of how much a
function changes over a domain. It has seen primary use as
a mathematical basis for denoising signals and images [15].
The principle is that signals or images with noise will have a
high total variation and minimising the total variation over an
image will bring it to closer to the noiseless original. The class
of Total Variation minimisation denoising methods have the
advantage that they will remove unwanted detail and preserve
the important details such as edges.

The effect of total variation minimisation is best demon-
strated graphically. Figure 2 is a recreation of the “bars”
experiment as originally performed in [15]. The experiment
consists of taking an image of black bars, adding noise and
performing total variation minimisation to take the noisy image
to an approximation of the original. The surface plots show
a 3D representation of the images at the three stages. In the
last plot we can see that TV minimisation has preserved the
original edges and removed the spurious noise from the image.
The only drawback is a slight clipping of the height (intensity)
of the bars.

A. Total Variation

There are two commonly used TV variants for images, see
[16]: the isotropic TV defined as (2) and the l1 based and
anisotropic TV defined as (3).

Given an (alpha matte) image α ∈ Rm×n of dimensions
m× n, the isotropic TV is defined as

TVI(α) =
m−1∑
i=1

n−1∑
j=1

√
(αi,j − αi+1,j)2 + (αi,j − αi,j+1)2

+
m−1∑
i=1

|αi,n − αi+1,n|+
n−1∑
j=1

|αm,j − αm,j+1| (2)
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Fig. 2: The bars experiment: (a) The original image, (b) with noise added, (c) after TV minimisation, (d), (e) and (f) the
corresponding surface plots

and the l1 based anisotropic version is defined as

TVl1(α) =
m−1∑
i=1

n−1∑
j=1

{|αi,j − αi+1,j |+ |αi,j − αi,j+1|}

+
m−1∑
i=1

|αi,n − αi+1,n|+
n−1∑
j=1

|αm,j − αm,j+1|
(3)

where αi,j is a pixel value at location [i, j].

B. A Fast Algorithm for TV-Based Denoising

The TV of an image can be considered as prior knowledge
which can be introduced into the matting process as a regu-
lariser. For our purpose of image matting, in this section, we
provide an overview of a fast algorithm for solving the TV-
based image denoising problem, as detailed in [16]. We adopt
their techniques in our proposed TV-based matting algorithm,
see section IV.

Consider the problem of image denoising with TV regular-
isation

min ∥b−α∥2 + 2λTVTV (α), (4)

where b is a corrupted observation of the “true” image α,
TV (α) is the TV norm defined by (2) or (3) and λTV is a
constant regulariser with an appropriate value controlling the
trade-off between degrees of noise and image regularisation.

There are two non-trivial issues with the problem described
by (4). Firstly the TV norm is non-smooth. Secondly the large
scale of the optimisation problem makes the task of building
fast and simple numerical methods difficult, particularly in the
case of images. A fast algorithm to (4) is practically desired.
Such an algorithm is going to be the building block of our
new matting algorithm under the TV constraint, detailed in
the next section.

There are many different approaches for dealing with the
difficult term g(α) = 2λTVTV (α) in (4) [17], [18], [19].
In recent years, the dual approach becomes affordable via
the development of optimisation algorithms such as the Fast
Gradient Projection (FGP) algorithm [16], [17].

To demonstrate the resulting dual problem from (4) we must
fix some notation:

For the isotropic TV norm, denote PI as the set of matrix
pairs (p,q) where p ∈ R(m−1)×n and q ∈ Rm×(n−1) that

satisfy

p2i,j + q2i,j ≤ 1, |pi,n| ≤ 1, |qm,j | ≤ 1 (5)

In the case of the anisotropic l1, denote TV norm Pl1 as the
set of matrix pairs (p,q) where p ∈ R

(m−1)×n and q ∈
R

m×(n−1) that satisfy

|pi,j | ≤ 1, |qi,j | ≤ 1 (6)

Without loss of generality, we simply use P for two different
cases, actually P is a constrained subset of R(m−1)×n ⊗
R

m×(n−1).
The dual approach is based on the dual relation of the TVs:

TV (α) = max
(p,q)∈P

T (α,p,q) (7)

where

T (α,p,q) =
m−1∑
i=1

n−1∑
j=1

pi,j(αi,j − αi+1,j) + qij(αi,j − αi,j+1)

+
m−1∑
i=1

pin(αi,n − αi+1,n) +
n−1∑
j=1

qmj(αm,j − αm,j+1)

Taking (7) into (4) and swapping minα and max(p,q)∈P
operations, we will find it is easy to work out minα, this
results in the following dual problem

max
p,q∈P

{h(p,q) = −||b− λTVL(p,q))||2F } (8)

where L : R(m−1)×n ⊗ Rm×(n−1) → R
m×n is the discrete

divergence linear operator, defined by

L(p,q)i,j = pi,j + qi,j − pi−1,j − qi,j−1 (9)

where we assume that p0,j = pm,j = qi,0 = qi,n = 0. Once
we have a solution (p∗,q∗) to (8), the optimal solution to (4)
can be given by

α∗ = b− λTVL(p∗,q∗). (10)

The dual problem (8) is constrained but its objective func-
tion h(p, q) is smooth. In order to use gradient type methods
on the dual problem (8) we must find its gradient which is
easily obtained

∇h(p,q) = −2λTVLT (b− λTVL(p,q)) (11)
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where LT is the adjoint operator of L.
The method used to solve the dual problem is the Fast

Gradient Projection (FGP) algorithm, which is an extension
of the Gradient Projection (GP) algorithm. The improvement
in FGP over GP stems from the inclusion of information from
the previous two iterations. Values from the previous iterations
are linearly combined to create an estimation for the next
function value so that convergence is achieved much more
quickly. For comparison FGP achieves a rate of convergence of
O(1/k2). This means that the algorithm’s accuracy is defined
as 1/k2 where k is the number of iterations. This is a large
improvement over the current convergence rate of O(1/k)
achieved by GP.

Algorithm 1 FGP-TV: Fast Gradient Projection algorithm
for TV minimisation
Require: b - observed image, λTV - regularisation parameter

and N - number of iterations
1: Take (r1, s1) = (p0,q0) = (0(m−1)×n,0m×(n−1))

and t1 = 1
2: for k = 1 to N do
3: (pk,qk) = PP

[
(rk, sk) +

1
8λTV

LT (b− λTVL(rk, sk))
]

4: tk+1 =
1+

√
1+4t2

k

2
5: (rk+1, rk+1) =

(pk,qk) + ( tk−1
tk+1

)(pk − pk−1,qk − qk−1)
6: end for
7: return α∗ = [b− λL(pN,qN)]

The above algorithm depends on the projection onto the
constrained subset P . The conditions of the constraints are
given by (5) and (6), as such the projection is easily defined.
Given a pair (p,q), the projection (r, s) = PPI

(p,q) where
r ∈ R(m−1)×n and s ∈ Rm×(n−1) is given by,

rij =


pij

max{1,
√

p2
ij
+q2

ij
}

i = 1, . . . ,m− 1, j = 1, . . . , n− 1

pin

max{1,|pin|} , i = 1, . . . ,m− 1

sij =


qij

max{1,
√

p2
ij
+q2

ij
}

i = 1, . . . ,m− 1, j = 1, . . . , n− 1

qmj

max{1,|qmj |} , i = 1, . . . ,m− 1

Similarly, the projection (r, s) = PPl1
(p,q) is given by

rij =
pin

max{1, |pin|}
, sij =

qmj

max{1, |qmj |}
IV. MATTING WITH TOTAL VARIATION REGULARISATION

A. Formulation

We begin this section by describing the typical approach in
affinity based matting for finding an alpha matte then extend it
to include the non-smooth Total Variation constraint. With the
user-specified constraints like the scribbles or a trimap s, one
can formulate the matting problem as solving the following
smoothed objective function for the best alpha matte α∗

min
α

f(α) = αTLα+ λα(α− bs)
TDs(α− bs) (12)

where L is the affinity matrix like Laplacian [3] or LTSA
[4], λ is a scalar that indicates how confident the user is with
their input, Ds is a diagonal matrix whose diagonal elements
are one for constrained pixels and zero for all others, and bs
is the vector containing the specified alpha values (α = 0 for
background and α = 1 for foreground) for the contained pixels
and zero for others. For more details refer to [3].

In this section we propose to use the TV regularisation to
enforce edge preservation in the matting process. In the sequel,
without loss of generality, we consider a general unconstrained
formulation with a TV regularization

min
α

αTLα+ λα(α− bs)
TDs(α− bs) + 2λTVTV (α),

(13)

B. Suggested Optimization Algorithm

In (13), denote f(α) = αTLα+λα(α− bs)
TDs(α− bs),

g() = 2λTVTV (α) and F (α) = f(α) + g(α), then we can
see that f(α) is a convex smooth function while g(α) is a
convex nonsmooth function. Solving (13) is very challenging.
In this paper, we propose an efficient TV-Matting algorithm
(TV-M) by adopting Nesterov’s approach [20] which offers a
convergence rate of O(1/k2) for k iterations. This is optimal
for the first-order black-box methods.

To construct the ultimate algorithm, we approximate the
objective function F (α) in (13) by f(α)’s second order
expansion at a given point α̃,

h
C,α̃

(α) = f(α̃) + f ′(α̃)(α− α̃)T

+
C

2
∥α− α̃∥2 + g(α), (14)

where C > 0 is a constant. Thus the problem (13) is converted
to minimizing (14).

Nesterov’s method for solving (14) is based on two se-
quences {αk} and {sk} in which {αk} is the sequence of
approximate solutions while {sk} is the sequence of search
points. The search point sk is the convex linear combination
of αk−1 and αk as

sk = αk + βk(αk −αk−1)

where βk is a properly chosen coefficient. The approximate
solution αk+1 is computed as the minimizer of hCk,sk(α̃). It
can be proven that

αk+1 = argmin
α

Ck

2

∥∥∥∥α−
(
sk − 1

Ck
f ′(sk)

)∥∥∥∥2 + g(α)

(15)

where Ck is determined by the line search according to the
Armijo-Goldstein rule so that Ck should be appropriate for
sk, see [21].

Nesterov’s method needs an exact solver for problem (15),
however we employ the FPG-TV algorithm introduced in the
last section as the building block for an inexact αk+1 for
problem . Our experiments demonstrate that the final algorithm
as described below has great accuracy.
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Algorithm 2 The Efficient Nesterov’s Algorithm for TV-
Matting
Require: C0 > 0 and α0, K

1: Initialize α1 = α0, γ−1 = 0, γ0 = 1 and C = C0.
2: for k = 1 to K do
3: Set βk = γk−2−1

γk−1
, sk = αk + βk(αk −αk−1)

4: Find the smallest C = Ck−1, 2Ck−1, ... such that

F (αk+1) ≤ hC,sk(αk+1),

where αk+1 is defined by (15) and solved by FPG-TV
algorithm.

5: Set Ck = C and γk+1 =
1+

√
1+4γ2

k

2
6: end for
7: return αk+1

V. RECONSTRUCTION OF F AND B

Once we have the alpha matte α we also wish to reconstruct
the foreground and background. A naive approach is to mul-
tiply the alpha matte with the input image and multiply the
background with the inverse of the alpha matte as follows:

F = αI, and B = (α− 1)I (16)

This is the “hard” approach and often does not yield ideal
results. Instead we use the approach outlined by Levin et
al. [3]. The approach finds F and B by using the original
compositing equation (1) and introducing smoothness priors
on F and B. These smoothness priors are strongest in the
presence of matte edges. The objective function for finding F
and B is

min
F,B

∑
i

||αiFi + (1− αi)Bi − Ii||2 + ⟨∂αi, (∂Fi)
2 + (∂Bi)

2⟩

(17)

where ∂ is the gradient operator. For a fixed α the cost is
quadratic and the minimum is found by solving a set of linear
equations.

VI. RESULTS

In this section we provide visual results and quantitative
analysis of our technique. It is important to consider both
visual and numeric analysis because numeric methods may
not reflect the visual quality of an image [5]. For numerical
comparison we use the Mean Square Error (MSE) and the
Sum of Absolute Differences (SAD), which are the standard
measurements in the field of image matting.

We performed experiments using the low resolution training
images from the alphamatting.com [5] dataset. This dataset
was chosen as it is the benchmark dataset and the ground
truths for the alpha mattes are provided. It should be noted that
we used the trimaps provided by the dataset and not scribble
based input. All the tested techniques were implemented in
MATLAB on a consumer notebook with a 2.53Ghz Intel Core

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Three images chosen for detailed analyis. (a) GT02
- Wicker ball, (d) GT03 - Barbie and (g) GT04 - Trolls.
The second column is the corresponding trimaps and the third
column is the corresponding ground truth alpha mattes

2 Duo processor with 8GB of memory. To reduce computation
time we down sampled the images and ground truth alpha
mattes via the downSmpIm function provided by Levin et
al. in their MATLAB implementation of the Closed Form
Solution [3]. Parameters were fixed across the entire dataset
with λα = 1000 and λTV = 0.000005.

Detailed analysis is provided for three images from the
dataset: GT02 (Wicker ball), GT03 (Barbie) and GT04
(Trolls). These images are shown in Figure 3. These images
were chosen because they best represent the strengths and
weaknesses of our proposed algorithm. Numerical results are
provided in Table I and Table II and visual results can be seen
in Figures 5, 4 and 6.

Technique GT02 GT03 GTO4
Levin 0.0074 0.0022 0.0076
Levin + TV 0.0014 0.0071 0.0290
LTSA 0.0074 0.0022 0.0089
LTSA + TV 0.0034 0.0019 0.0405

TABLE I: MSE Results. Lower is better.

Technique GT02 GT03 GTO4
Levin 1.1938 1.3608 2.6633
Levin + TV 0.5670 2.8998 8.3170
LTSA 1.2229 1.3764 3.2919
LTSA + TV 0.8327 1.4867 9.8517

TABLE II: SAD Results. Lower is better.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4: Barbie - GT03. First row: Levin. Second row: Levin
+ TV. Third Row: LTSA. Fourth Row: LTSA + TV. First
column is the reconstructed alpha, second column is recon-
structed foreground and the third column is the reconstructed
background.

The Wicker ball (GT02) demonstrates the power of the TV
constraint. Visual comparison can be seen in Figure 5. Both
Levin + TV and LTSA + TV outperform the non constrained
counterparts. The TV constraint more consistently adheres to
boundaries and as such will reconstruct the holes in the wicker
ball more thoroughly, particularly when combined with the
Closed-form approach of Levin et al..

The Barbie image (GT03) represents a difficult case for
image matting in that there is a lot of fine detail in the hair.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5: Wicker Ball - GT02. First row: Levin. Second row:
Levin + TV. Third Row: LTSA. Fourth Row: LTSA + TV. First
column is the reconstructed alpha, second column is recon-
structed foreground and the third column is the reconstructed
background.

The Levin + TV approach performs the worst (Figure 4 (e)) as
large amounts of hair on the left hand side and at the bottom
right at neck have been removed. The LTSA + TV approach
has the lowest MSE of all as it captures most of the small
hairs on the left hand side and does not completely engulf the
transparent hairs on the right side of the neck as the non TV
approaches do. Minor dulling of the colours can be observed
in the TV constrained cases.

The Trolls (GT04 - Figure 6) image illustrates the trade
off that must be made between edge preservation and fine
detail preservation. The TV constrained approaches accurately
reconstruct the gap between the two dolls but fail to recon-
struct the entirety of the hair. The non-TV approaches fail to
reconstruct the gap but more accurately reconstruct the hair.

Results for the entire alphamatting.com dataset can be seen
in Figures 8 and 9. From our experimentation it is demon-
strated that applying the TV constraint yields improvements
in cases with hard edges but can struggle to produce accurate
reconstructions for fine details such as hair and fur. The TV
constraint approach excels at dealing with solid objects with
holes, much more than the non constrained approaches. It
should be noted that including the TV constraint significantly
increases computation time. There is a trade off to be made
when using these image matting techniques as they are suited
to different image types. It is evident that user input is required
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6: Trolls - GT04. First row: Levin. Second row: Levin
+ TV. Third Row: LTSA. Fourth Row: LTSA + TV. First
column is the reconstructed alpha, second column is recon-
structed foreground and the third column is the reconstructed
background.

to select the more suitable approach on a per image basis.
Additionally users may have to fine tune the λ parameters
to achieve the best possible result as shown in Figure 7. A
higher λα value (e.g. 1000) was found to be good at finding
object holes and boundaries when the foreground was more
solid, while a lower value causes fine detail to be preserved.
On average using λα = 1000 yielded the best results over the
dataset.

VII. DISCUSSION

We have provided an extension to existing matting tech-
niques by introducing a Total Variation constraint over the
alpha matte. This method is applicable to a wide variety
of affinity based matting techniques. The TV constraint has
shown it’s effectiveness in particular cases such as solid objects
with holes or gaps. In images that present difficult scenarios
for the TV constraint such as hair and fur it still manages to
improve the result by providing a much more consistent alpha
matte overall. The results reinforce the belief that matting is
still an interactive process as different techniques are better
suited to different images.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7: A comparison of different λα values for Levin + TV.
Rows 1 and 3 λα = 1000 and rows 2 and 4 λα = 1.

Fig. 8: MSE across the alphamatting.com dataset
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