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Abstract

Historically, image formation parameters and hyper-
parameters have been tuned by hand for image restoration
due to the lack of a broadly applicable selection framework.
This has substantially limited the application of state-of-
the-art image processing methods. We show that recasting
the problem of image restoration to include the additional
task of inpainting pixels permits an automatic hyperpa-
rameter selection procedure for image restoration through
a pixel-wise hold-out cross-validation. This procedure is
algorithm-agnostic and works on single images without any
prior information. We show that the estimator in the proce-
dure is affinely unbiased under very general settings and
can be used for model selection. We provide a reference im-
plementation to demonstrate how to extend existing meth-
ods to support inpainting and present empirical results. We
hope that this eliminates manual tuning in image restora-
tion pipelines.

1. Introduction

Digital imaging is subject to defects, such as blurring
and noise, at each step of the imaging pipeline. This is due
to imperfections in lenses, subject motion, vibration, light-
ing conditions, sensor damage, quantisation error and sen-
sor read noise. As a result, the problem of recovering the
original image from a corrupted source finds wide applica-
tions and has been well studied.

In this paper, we assume a general image—formation
model and problem

Xobs = F¢(Xtrue) +n, (D

where F is a forward operator parametrised by ¢ € &
(e.g. a convolution with PSF parameters), and n is any
zero-mean, finite-variance noise. The problem of recover-
ing the true image, Xt,,e, from an observation, X s, with-
out knowledge of the parameters is known as “blind” image
restoration. Both images are assumed to be € R™*".

Attempts to solve (1) fall into two broad classes. Varia-
tional (model-based) methods add an explicit penalty to sta-
bilise the inversion [9] e.g. total variation (TV) [24], or non-
local means priors [10]. Their performance is controlled
by a small set of hyper-parameters, such as regularisation
weights.

Data-driven methods learn a direct mapping from cor-
rupted to clean images from paired clean/corrupted im-
ages. These have evolved over time from relatively simple
multi-layer perceptron architectures, through to Convolu-
tional Neural Networks and recently Diffusion models [8].
While they achieve state-of-the-art accuracy, they demand
substantial training compute. Moreover, they may not gen-
eralise to imaging domains that are not part of the training
set distribution. Nor do they directly reveal image forma-
tion parameters since they are encoded in the layers of the
network used.

Therefore unsupervised single-image restoration is still
of interest and remains an open problem. Unfortunately
we are left with uncertainty around selecting optimal im-
age formation parameters and hyper-parameters. Histori-
cally both kinds of parameters have been tuned by hand due
to the lack of a broadly applicable selection framework. We
remark that if a solver never sees a subset of pixels in an
image, then the error that it makes is an estimate of the gen-
eralisation error. We show that it is possible to exploit this
“self-consistency” observation to devise an automatic pa-
rameter selection procedure for image restoration through a
pixel-wise hold-out cross-validation. Our contributions and
differences from prior works are:

* A model-agnostic, single-image procedure that re-
covers plausible image formation and optimal hyper-
parameters,

* A proof that the estimator is affinely unbiased under
arbitrary zero-mean finite-variance noise,

e A derivation of the estimator variance, confidence
bounds and guidance on practical use of the estimator,



2. Related Work
2.1. Variational Image Restoration

Classical variational image restoration formulates the
forward operator and a prior as an objective that is min-
imised iteratively. Total-Variation (TV) regularisation [24]
remains the canonical prior for edge—preserving recov-
ery and spawned a long line of inquiry into optimisation
schemes. The iterative soft-thresholding method (ISTA) [7]
and its accelerated variant FISTA [3] are still the template
for proximal algorithms. Numerous primal-dual methods
(e.g. PDHG [22]) and Split-Bregman variants [ 1] further
refined these ideas. The Generalised Accelerated Proximal
Gradient (GAPG) approach of Zuo and Lin [34] offers im-
proved runtime performance over the aforementioned ideas
by removing the need for an expensive inner total variation
solver. However none provide a mechanism for selecting
optimal blur kernel or regularisation weight and in fact this
problem is usually ignored.

2.2. Hyper-Parameter Selection

Selecting hyper-parameters is a challenging problem by
itself. Classical point-estimators include the L-curve [13],
Generalised Cross-Validation (GCV) [12] and Stein’s Un-
biased Risk Estimate (SURE) [26]. Unfortunately, all three
make strict assumptions that break down once the forward
model contains unknown parameters.

2.3. Non-Negative Matrix Factorisation

We draw inspiration from work in matrix factorisation
for selection of the factorisation rank. This work dates
back to Wold’s work on PCA [30] which used the idea of
masking a random sub-matrix, performed a fit on the re-
maining data and predicted the masked values. This work
was more extended to Non-Negative Matrix Factorisation
(NMF) [15, 21]. At the time Wold remarked that:

The present cross-validatory procedure also rests
on the property of the NIPALS procedure to work
with incomplete data

which highlights the need for complimentary image restora-
tion methods.

2.4. Image Inpainting

Inpainting is the task of restoring an image where parts
of the image are marked as missing or corrupt. These miss-
ing images are denoted by a mask provided to the inpainting
solver. Early work propagated colour along image struc-
tures with differential equations. The first of these were
based on fluid flow [4], then curvature-driven diffusion [5].
Simple harmonic and biharmonic interpolation [17, 14, 6]
remain popular because they run in milliseconds.

The rise of deep learning has made the field explode.
CNN-based approaches such as Contextual Attention [31],
Partial Convolutions [18] and Gated Convolutions [32] can
plausibly fill large irregular holes while respecting texture.
Subsequent two-stage pipelines first hallucinate structure
(edges or semantics) and then colour it in. Influential ex-
amples include EdgeConnect [20] and CoMod-GAN [33].
More recently, LaMa [27] shows that large receptive fields
and fast Fourier convolutions can match GAN quality and
diffusion can be used to solve inpainting tasks e.g. RePaint
[19] and Palette [25].

2.5. Self-Consistency in Deep Learning

A recent wave of self-supervised methods exploits the
independence between held-out and predicted pixels. Deep
Image Prior (DIP) fits the weights of an untrained CNN
to a single degraded image and uses the network’s ar-
chitecture as a prior [28]. Noise2Self extends the idea
to denoising with arbitrary “J-invariant” predictors [2].
The Noise-Tolerant Self-Supervised Inversion framework
(NT-SSI) applies the same principle to deconvolution
o2 [16].

2.6. Summary

Our work is closest in spirit to Noise2Self and NT-SSI
yet differs in three key aspects. First we tackle the prob-
lem of simultaneously recovering both plausible image for-
mation parameters and hyper-parameters rather than fitting
a black-box deep neural network. Second we clarify and
expand on their theoretical results by investigating the vari-
ance of the estimator and derive variance bounds that link
the mask density to image size so that we can analytically
choose a hold-out rate. Third and finally, our procedure
is more general in that it uses any available convex solver,
such as a TV solver or even a deep neural network, enabling
the user to make a tradeoff between computational time and
restoration quality.

During final proofing, we discovered a relatively un-
known body of work by Reeves [23] from the early 90s
that overlaps our work. It was both frustrating and relieving
to discover this work since it takes priority (credit) of this
idea, yet at the same time shows that the we are not alone
in this line of thinking. However that body of work does
not focus on pixel-wise holdout as Reeves quickly move
onto generalized cross validation, which we believe is due
to their choice of L2 regularisation and the lack of solvers
for other penalties at that time. The authors wish to draw
the readers attention to the fact that the body of work by
Reeves does not provide theoretical justification for pixel-
wise holdout as is presented in this paper. We also wish to
point out that in the discussion we mention many further
extensions to this idea that have not been proposed, to the
best of our knowledge.



3. Pixel-Wise Cross-Validation

The core idea of pixel-wise cross-validation is: if a
restoration algorithm never “sees” a chosen subset of pix-
els, then the reconstruction error on those withheld pixels
serves as an unbiased proxy for its out-of-sample perfor-
mance. We call this concept “self-consistency”.

Concretely, we randomly mask out a small fraction of
pixels, run any black-box solver on the remaining data, and
then re-evaluate the solver’s predictions only on the held-
out set. By repeating this for each candidate pair of forward-
model parameters and solver hyper-parameters, we obtain a
score whose minimizer identifies the combination that best
generalizes to unseen pixels.

We assume access to an image restoration solver:

X*(¢,0) = SOLVER(Xobs, M, ¢, 0), (2)

which in practice solves

2

X*(¢,0) ~ argxljninHM@ (Fs(X) — Xobs) ||;

masked data fidelity (3)
+ Reg9 (X ) 3
————

solver-specific prior

where M € {0,1}™*™ is a binary mask with held-out pix-
els set to zero or one otherwise, Regy denotes any priors of
the solver such as regularisation, filter, or network weights
controlled by hyperparameters 6 € ©.

Since (3) makes no assumption on the form of SOLVER,
one can plug in simple filters, variational methods or deep
neural networks - so long as they support masking pixels.

3.1. Procedure

The procedure selects the best (¢, #) by measuring pre-
diction error on held-out pixels. The procedure is as fol-
lows:

1. Masking. Draw M;; ~ Bernoulli(1 — p), where p
is the proportion of held-out pixels, the training set is
Qy = {M,;; = 1}, the validation set is Q, = {M;; =
0} and V' = |, ].

2. Masked reconstruction. For each (¢,6) € ® x ©
solve

X*(¢,0) = SOLVER(Xobs, M, ¢, 0), (4

3. Hold-out scoring. Compute the mean-squared error
on §2,:

§(¢,9)=% > [F¢(x*(¢,9))ij—xobs,ijr.
i,7)€Qy

&)

Algorithm 1: Pixel-Wise Cross-Validation
Input: X, candidate parameters @, ©, hold-out rate p

1 Sample M;; ~ Bernoulli(1 — p);

2 Define Q, = {M;; =0}, V = |Q,];
3 foreach ¢ € ¢, 6 € © do
4

X*(¢,0) + SOLVER(Xobs, M, ¢, 0);
2

s | B« %Z(i,j)egv [Fs (X (6,0))ij — Xobs,ij] 5
6 Store R(¢,0) = E;
7 (¢*,0%) < argmin §(¢, 0);
8 return (¢*,0")
4. Selection. Choose the minimiser
(¢*,6%) = argmin R(¢,0), ©6)

(¢,0)ePXO

then optionally recompute X*(¢*, 6*) on the full im-
age (M =1).

This procedure is summarised in Algorithm 1.

3.2. Affinely Unbiased Estimator

IfR systematically over- or under-estimates the true pre-
dictive risk Rpred (¢, 0), it could lead us to choose subop-
timal (¢, 0). Therefore one may be interested in knowing
how faithfully R estimates the true predictive risk.

Lemma 3.1. Under any zero-mean, finite-variance noise
the pixel-wise CV score (5)

E[R] = V Z [F¢(X )ij — F¢* (Xtrue)ij] -+ 02.
(4,0)EQ

Rprcd (¢a 0)
@)

where we use R = §(¢7 0) for brevity.

Therefore R is an affinely unbiased estimator of the true
predictive risk Rpyeq. Since o is independent of (¢, #), min-
imising R is equivalent to minimising [;;.q and can be
used to select optimal (¢, 0).

Proof. X*(¢,0) depends only on the training pixels, so for
each held-out (4, j) the deterministic bias

dij = Fo(X7)ij — Fo. (Xorue)ij ®)
is independent of the noise term n;;. Meanwhile

KXobs,ij = Fo, (Xtrue)ij + Nij, 9



so the squared residual can be written
X 2
[Fs(X")ij = Xobs,ij]” = (di — nij)?
=d;; — 2d;jn; +n3;. (10)

Taking expectations, the cross-term vanishes and E[nfj] =
o?, giving

E((dij —nij)?] = d; + 0°. (11)

Finally, averaging over all V' held-out pixels completes the
proof:

~ 1
(2,7)EQ,
1 .
=7 D (Fo(X%)ij = Fo, (Xirue)is)® + 0.
(4,5)€Qy

3.3. Variance

Using a random mask introduces randomness into the
procedure. At the same time there is a bias-variance trade-
off to be made as increasing p will decrease variance of the
estimator but increase bias. Therefore one may be interested
in the variance of our estimator for different values of p. We
show that in practice, for images from modern consumer de-
vices the standard deviation is very tight for modest values
of p.

Lemma 3.2. Recall (), as the set of V held-out pixels and
R(¢, 0) defined as (5) then
~ My —o* 402 9
Var[R(¢,0)] = ——+ 5 D di (13
(4,5)€EQy

where My is the fourth moment, for symmetric noise with
zero mean.

Proof. For each (i,7) € €, write the prediction residual
as

* 2 2
Vij = [Fo(X")ij — Xobsij] = (dij —mniz)”,  (14)

where d;; is the bias. Since d;; is fixed (once X™ is com-
puted) and n;; is independent across pixels,

Var []3@ = Var(% ZYZ»J) = % ZVar[Y;j]. (15)
Qy

Expanding and since d;; is constant

Var[Y;;] = Var[—2d;; n;j + nfj] (16)

Using the variance of the sum of two random variables we
have

Var[Y;;] = Var(ng;) + 4d;; Var(ns;) — 4d;;Cov(n3;, nij).

A7)

Under symmetric noise with zero mean, we have
Cov(nfj, ng;) = E[n};] = 0 therefore

VarlYj;] = (My — o*) + 4d3;0°. (18)

Substituting back yields

~ 1 4 402 9
Var[R] =2 -V (M — 0*) + 5 S
(1,5)EQy

M4 — 0'4 40’2 2
(,)€Q0

as claimed.
O

Example As of writing, consumer devices have on aver-
age 54MP sensors [1], although these are often binned or
down-sampled to 12-24MP final images. For illustrative
purposes we assume: a typical final image will be roughly
4000 x 6000 pixels, Gaussian noise with fourth moment
M, = 30*, a hold out rate of p = 0.05 and a high quality
reconstruction permitting us to drop the deterministic bias
term. This yields:

30 — ot 402 _ 204

Plugging in the image size, and a reasonable approximation
of the image noise o = 0.01 we have

Std ~ 1.29 x 1077, (1)

which is usually negligible compared with typical differ-
ences between competing (¢, 6) pairs.

3.4. Distribution-Free Confidence Bounds
Throughout this section let

R(¢,0) := R(¢,0) — 0>, (22)

so that E[R] = Rpeq. Lemma 3.2 shows that, for symmet-
ric i.i.d. noise with variance 2 and fourth moment M,

72 . 1 2
@ =5 dy. (13)

Qy

. M, — 4 42
Var[R] :4Ta+%d2,



Chebysheyv tail. Because (13) holds for all noise distribu-
tions with finite My, Chebyshev’s inequality gives a distri-
bution—free deviation:

~ Var[R)
PT( |R - Rpred| > 5) < -2
My — o* + 402d?
< = (23)

Required mask size. To achieve half-width € with confi-
dence 1 — § it suffices to choose

M — ot + 4022
e S 70
de? mn

Multiple hyper-parameter trials. When D candidate
pairs (¢, ) are scored on the same mask, a union (Bon-
ferroni) bound on (23) yields

Pr(r%%(\é(t)—]%pred(tﬂ > 5) (25)

DM, — 0% + 402d?] }

< ming 1
< mln{ , Vo2

and therefore

D [My — o* + 40%d?]

V= de?

(26)

guarantees the same (¢, d) band simultaneously for all D
configurations.

Practical impact. At first sight (26) suggests an explo-
sion in the number of held-out pixels when a fine (¢, 6) grid
is explored. In practice the bound is overly conservative be-
cause:

1. the D risk estimates are highly correlated,

2. modern sensors exhibit o 2~ 10~% in [0, 1]-normalised
units, so the leading factor My — ot = 20%is < 2 x
1078,

3. averaging over K independent random masks divides
the variance by K, and a coarse-to-fine grid search re-
duces D by orders of magnitude before the tight mask
is needed.

4. Join Restoration and Inpainting

To demonstrate how one can jointly inpaint and restore
an image we extend the GAPG [34] total-variation-based
deblurring algorithm. We note that while [34] discusses de-
blurring and inpainting, they were considered separate tasks
with separate optimisation schemes. We show how to unify
them.

4.1. GAPG-Inpaint

We consider the optimization problem

min - f(X) + g(X),  @7)

I<X<u
1
F00) = SV (P X - X2
g(X) = 2ATV(X),

where f(X) is the data-fidelity term, P x X denotes con-
volution with a fixed PSF P, g(X) is either isotropic or
anisotropic total variation, A is the TV regularization weight
and [l, u] enforces magnitude constraints on X to generate
a valid pixel intensities.

We summarize the GAPG-Inpaint algorithm in Algo-
rithm 2. The only change is that the gradient is com-
puted only on the observed pixels. Concretely, we replace
Vf(Y)=PT(P*Y — By,s) by the masked version

Vi(Y)=PT(M®(PxY — Bo)), (28)

so that any contribution from a held-out pixel (where M;; =
0) is zeroed out.

Note that in real computation, the matrix-vector products
in Algorithm (2) must be replaced by operators acting on
images. This means that P* Y and P (-) are implemented
via 2D convolution, not matrix—vector products.

Algorithm 2: GAPG-Inpaint: Accelerated
Proximal-Gradient for Joint Deblurring+Inpainting

Input: Observed image B,ps, PSF kernel P, mask
M,
TV weight A\, bounds [, u, iterations K
Output: Recovered image X g
1 Estimate Lipschitz constant L of V f;
2 Initialize Xg = Bops, Yo = Xo, to = 1;
3 fork=1to K do
2
o (tk—l — 1)/tk-
Y X1 +a(Xpo1 — Xi—2)
Vf(Y) — PT(MQ (P*Y_ Bobs))
Z «clip(Y = +Vf(Y), l,u)
X proxg/L(Z)

e e N Nt A

10 return X g

4.2. Practical Considerations

In practice we warm start the GAPG algorithm by esti-
mating missing pixels using Biharmonic Inpainting [6] as
implemented by [29]. This substantially reduces the num-
ber of iterations of GAPG-Inpaint required for convergence
and ultimately the running time of the algorithm.
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Figure 1: Comparison of R and Rprea Over a range of A
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Figure 2: Comparison of R and Rpreq over a range of blur
standard deviation for a Gaussian blur kernel with fixed and
optimal A from Figure 1.

5. Experiments

In this section we use the GAPG-Inpaint algorithm with
anisotropic total variation for all image restoration tasks.

5.1. Proof of Concept

To demonstrate the concept we perform a toy experiment
of recovering an image from a blurred and noisy image i.e.

Xobs =Px Xtrue +n, (29)

where P is a Gaussian blurring kernel, * is the convolution
operator and n is Gaussian noise.

For this experiment we use the astronaut image from
[29], see Figure 3, which is an excellent test image due to
the varied textures and feature size. We use a 19 x 19 Gaus-
sian kernel with mean zero and standard deviation op = 2.

To this we add Gaussian noise with mean zero and standard
deviation 102, For this experiment we set the hold-out rate
pto 20%.

We first search for an optimal A under this setting by

calculating R using the true blur kernel. We report both R
and the R;r.q. Results are presented in Figure 1. We find
that the minimum of R aligns with the minimum of the true
predictive risk.
__ Next we fix A to the value corresponding to the minimum
R error and then search for the blur kernel standard devia-
tion. Again we report 1% and the R..q. Results are pre-
sented in Figure 2. We find that the minimum of R aligns
with the minimum of the true predictive risk and closely
matches the true op = 2.

This toy experiment shows that the self-consistency con-
cept and the pixel-wise cross validation error R can in-
form and guide selection of image formation and hyper-
parameters. This can be observed from the re-blurred best
reconstruction almost exactly matching the observed image,
see Figure 3. We note that this a single run i.e. a single ran-
dom mask was used. We expect that repeated evaluation
with different masks would yield an even tighter estimate
onop.

5.2. Hold Out Sensitivity

Next we investigate the impact of the hold-out fraction p
on the ability to identify parameters. Under the same set-
tings as the previous subsection we sweep over p between
0.1 and 0.9 with a correctly specified Gaussian blur kernel
and optimal \. We observe as expected that the reconstruc-
tion quality degrades with decreasing p, shown in Figure 4.
What is less predictable, however, is that the degradation is
non-linear with a sharp loss of quality below p = 0.2.

The next question is whether this relative degradation
impacts on estimating parameters. To investigate this we
sweep over p while varying the blur kernel standard devi-
ation in a similar fashion to the previous subsection. We
repeated this process with 5' replicates at each setting and
reported the mean standard deviation. Results are visualised
in Figures 5 and 6. We removed the p = 0.1 case since with
so few replicates the results were considered unreliable. We
observe a general trend that the correct parameters are re-
covered on average, even for low values of p.

6. Discussion and Future Work

We introduced pixel-wise cross-validation, a simple pro-
cedure that automatically recovers plausible image for-
mation and optimal hyper-parameters by minimising a
hold-out error on masked pixels. The method is entirely
algorithm-agnostic - it wraps any restoration solver that

'We would prefer this to be much greater but we’re trying to meet the
paper deadline!
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Figure 3: Images used in the proof of concept experiment. (a) The original astronaut image, (b) the observed blurred and
noisy image, (c) the error between the observed image and the re-blurred best reconstruction, and (d) the best reconstruction.
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Figure 4: Comparison of R and Rprea over a range of p
using the correct Gaussian blur kernel and optimal A.

accepts a binary mask. Theoretical analysis shows that
the score is an affinely unbiased estimate of the predictive
risk and provided the first finite-sample variance formula
and distribution-free confidence interval for pixel-mask
cross-validation.

The theoretical analysis opens many statistical and algo-
rithmic extensions for future work such as:

* tighter variance bounds and parameter error bounds,

» improved search strategies by using the variance re-
sults, bayesian optimisation or smoothness of the pa-
rameter space,

* proving that a unique minimiser exists for the hold out
error.

7. Code

Code for this paper can be found at https://
github.com/sjtrny/sibpr—-dicta25.
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Figure 5: Average R for given values of p over a range of
blur standard deviation for a Gaussian blur kernel with fixed
but potentially sub-optimal A.
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